На правах рукописи

Хорольская Светлана Владимировна

КООПЕРАТИВНЫЕ ВЗАИМОДЕЙСТВИЯ НАНОЧАСТИЦ МЕТАЛЛА (Cu, Ag, Bi, Ni) В ИОНООБМЕННОЙ МАТРИЦЕ ПРИ ВОССТАНОВЛЕНИИ РАСТВОРЕННОГО В ВОДЕ КИСЛОРОДА

Специальность 02.00.04 – физическая химия

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата химических наук

Работа выполнена в ФГБОУ ВПО «Воронежский государственный университет»

Научный руководитель: доктор химических наук, профессор,

заслуженный деятель науки РФ

Кравченко Тамара Александровна

Официальные оппоненты:

Ревина Александра Анатольевна, доктор химических наук, профессор, Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, ведущий научный сотрудник лаборатории электронных и фотонных процессов в полимерных материалах

Ферапонтов Николай Борисович, доктор химических наук, ФГБОУ ВПО «Московский государственный университет им. М.В. Ломоносова», ведущий научный сотрудник кафедры физической химии

Ведущая организация:

ФГБОУ ВПО «Кубанский государственный университет»

Защита состоится 26 июня 2014 г. в 14^{00} ч. на заседании диссертационного совета Д 212.038.08 по химическим наукам на базе Воронежского государственного университета по адресу: 394006 г. Воронеж, Университетская пл.1, ауд. 439.

С диссертацией можно ознакомиться в научной библиотеке Воронежского государственного университета и на сайте www.science.vsu.ru/disser.

Автореферат разослан « » мая 2014 г.

Ученый секретарь диссертационного совета

Семенова Галина Владимировна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Среди функциональных композитных материалов нового поколения перспективны металл-полимерные нанокомпозиты (НК), в которых наночастицы металлов или их соединения введены в поры полимерной матрицы с привитыми ионообменными центрами (Д.Н. Муравьев, Г.Н. Альтшулер, В. Corain, А.К. SenGupta и др.). Нанокомпозиты такого типа способны интенсифицировать широкий ряд химических процессов благодаря высокой реакционной способности наночастиц и участию полярных групп полимера. В частности, в силу своих бифункциональных свойств НК эффективно вступают во взаимодействие с молекулярным кислородом, что открывает возможности их применения для глубокого удаления коррозионно активного кислорода, растворенного в воде.

Однако кинетика химических процессов в значительной мере зависит от природы, количества и размеров наночастиц в НК. Например, отмечается (Т.Н. Ростовщикова, В.В. Смирнов, С.А. Завьялов, В.И. Заболоцкий, Н.В. Шельдешов, R.J. Forster), что начиная с некоторого критического содержания наночастиц металла на носителе, его состояние перестает представлять собой совокупность изолированных частиц, образуя ансамбль, в котором при оптимальном расстоянии между частицами становится возможна электронная проводимость. Увеличение количества введенного металла в носитель должно приводить к росту скоростей процессов с участием НК как за счет повышения емкости одного из компонентов системы, так и за счет увеличения удельной проводимости. С другой стороны, более высокое содержание металлических частиц, чем противоионов матрицы, обеспечивающих активный сток продуктов реакции (быстрые ионообменные стадии), может существенно изменить скорость и механизм процесса. Между тем, составить общее представление о влиянии количественного содержания металла на скорость и механизм гетерогенной реакции восстановления кислорода, прибегая к имеющимся данным (Д.В. Конев, Н.В. Соцкая, Л.А. Шинкевич), не представляется возможным. Вследствие этого возникает потребность в установлении связи между содержанием частиц металла в ионообменной матрице и кинетическими и динамическими характеристиками восстановления кислорода, что позволит сделать обоснованный выбор относительно оптимальной емкости металлического компонента в композите.

Исследования по теме поддержаны Российским фондом фундаментальных исследований (гранты № 09-03-00554, 10-08-91331-ННИО_a, 11-08-00174_a, 14-08-00610 a).

Цель работы: установление роли кооперативных взаимодействий наночастиц металла (Cu, Ag, Bi, Ni) и ионообменных групп полимера в кинетике и динамике восстановления растворенного в воде кислорода и обоснование выбора состава нанокомпозита металл-ионообменник для глубокого обескислороживания воды.

Задачи:

- 1. Получение и физико-химическая характеристика нанокомпозитов металл (Cu, Ag, Bi, Ni)-ионообменник КУ-23, в ряде исследований КУ-2-8, Purolite A109, Purolite D24002.
- 2. Исследование кинетики восстановления кислорода нанокомпозитами металл-ионообменник в зависимости от природы и содержания металла (емкость 1-10 мэкв/см³).
- 3. Исследование динамики редокс-сорбции кислорода нанокомпозитами металл-ионообменник в зависимости от природы и содержания металла.
- 4. Практическое применение результатов работы в процессах обескислороживания воды и концентрирования металлов.

Научная новизна.

- Впервые выявлен фактор, отвечающий за степень полноты химического осаждения частиц металла в сульфокатионообменник. На примере серебра и его прекурсоров (галогенидов серебра) показано, что этим фактором является адсорбция галогенид-анионов (коионов), в результате которой частицам галогенида серебра сообщается одноименный заряд. Повышение адсорбции анионов в ряду CI¬>Br¬>І¬ приводит к снижению степени полноты восстановления металла.
- Установлено, что при химическом осаждении металла (на примере меди) в ионообменную матрицу количество агрегатов наночастиц увеличивается пропорционально емкости вплоть до 5 циклов осаждения, с дальнейшим наращиванием емкости снижается и происходит их укрупнение. Максимальное число агрегатов приходится на порог образования единого по электронной проводимости перколяционного кластера.
- Показано, что в ряду Ag < Bi < Ni < Cu наблюдается увеличение скорости реакции единичного зерна НК с растворенным в воде кислородом и возрастание степени редокс-сорбции кислорода на зернистом слое. С ростом константы скорости реакции в данном ряду происходит смена лимитирующей стадии с кинетической на внутридиффузионную, обеспечивающую максимальную скорость процесса, и размер частиц металла становится менее значимым фактором.
- Найдено, что по мере увеличения содержания меди (1-10 мэкв/см³) количество восстановленного кислорода сначала растет и на рубеже порога перколяции электронной проводимости нанокомпозита достигает предельных значений. При низком содержании меди и ее нахождении в виде изолированных частиц в суммарном процессе окисления преобладает их локальная ионизация (до Cu^{2+}) в присутствии противоионов H^+ . Когда отдельные агрегаты наночастиц кооперируются в единый перколяционный кластер, определяющая роль принадлежит не равномерной ионизации металла, а образованию слоев оксидных продуктов (Cu_2O , CuO).
- Обнаружено, что в динамических условиях в силу различной скорости распространения концентрационных фронтов ионных и оксидных продуктов по вы-

соте слоя зависимость времени проскока кислорода от емкости НК по металлу обнаруживает экстремальный характер. Максимум времени проскока приходится на момент образования бесконечного кластера и появления кооперативных взаимодействий по всему материалу НК.

Практическая значимость работы. Экспериментальными данными обоснована наибольшая эффективность использования медьсодержащих нанокомпозитов с емкостью 5 мэкв/см³ для длительного и глубокого обескислороживания воды. Показана возможность глубокого удаления растворенного кислорода из воды от 8000 мкг/л до ≤ 10 мкг/л. Обескислороживающий аппарат (патент № 134527 RU) с насадкой рекомендуемого нанокомпозита введен и апробирован в замкнутом контуре отопительной системы на предприятии ГК «Протэк» г. Воронежа, что подтверждено соответствующим актом о внедрении.

Возможность циклического химического осаждения металла в ионообменниках (КУ-23, КУ-2-8, Purolite A109, Purolite D24002) положена в основу разработанного способа концентрирования химически активных металлов в виде труднорастворимых осадков их соединений на примере выделения ионов никеля из растворов.

Положения, выносимые на защиту:

- 1. Степень полноты восстановления наночастиц металла в ионообменнике, полученных путем ионообменного насыщения, осаждения и восстановления, определяется зарядовым состоянием прекурсора за счет адсорбции коионов.
- 2. При циклическом химическом осаждении металла в ионообменную матрицу и кооперации частиц вплоть до появления бесконечного электронпроводящего кластера преобладает образование новых агрегатов частиц, после чего преимущественно происходит срастание и укрупнение существующих.
- 3. В ряду Ag < Bi < Ni < Си наблюдается увеличение константы скорости реакции единичного зерна НК с растворенным в воде кислородом и возрастание степени редокс-сорбции кислорода на зернистом слое.
- 4. Количество восстановленного кислорода единичным зерном и зернистым слоем нанокомпозита металл-ионообменник в зависимости от содержания металла достигает предельных значений у порога возникновения единого электронпроводящего кластера и появления общих кооперативных свойств частиц металла.
- 5. Увеличение содержания металлического компонента ведет к смене механизма от активного растворения изолированных частиц металла с участием ионообменных групп до окисления приповерхностного слоя зерна с образованием оксидов, которое после порога перколяции электронной проводимости становится преобладающим.

Личный вклад автора. Автором поставлены задачи исследования, получены основные экспериментальные данные, проведена их обработка и анализ, сформулированы выносимые на защиту положения, выводы, подготовлены статьи и представлены устные и стендовые доклады.

Публикации и апробация работы. По материалам диссертации опубликовано 15 работ, из которых 7 статей, 1 патент и 7 тезисов докладов. Основные результаты работы докладывались на V и VI Всероссийских конференциях «Физико-химические процессы в конденсированном состоянии и на межфазных границах» (Воронеж – 2010, 2012), Международных конференциях «Ion Transport in Organic and Inorganic Membranes» (Krasnodar, Russia – 2010, 2011, 2012, 2013), International Conference on Ion Exchange «IEX 2012» (Cambridge, UK – 2012).

Структура диссертации. Работа состоит из введения, пяти глав, выводов, списка литературы и приложения, изложена на 179 страницах, содержит 49 рисунков, 27 таблиц. Список литературы включает 224 библиографических наименования.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Глава 1. Обзор литературы. В данной главе с различных позиций рассмотрены особенности нахождения металлов в наносостоянии в составе пористых полимеров и ионообменников. Освещены основные области практического использования таких нанокомпозитов. Приведен подробный обзор кинетики и динамики восстановления веществ нанокомпозитами металл-полимер, а также проанализированы подходы математического описания. Подчеркнута особая значимость учета размера частиц и их содержания при исследовании и моделировании взаимодействия растворенного в воде кислорода с нанокомпозитами. Рассмотрено современное состояние вопроса о циклическом концентрировании металлов в ионообменных матрицах и удалении молекулярного кислорода из воды.

Глава 2. Объекты и методы исследования. Полимерными основами металлсодержащих НК служили макропористый сильнокислотный сульфокатионообменник КУ-23 15/100, гелевый сильнокислотный сульфокатионообменник КУ-2-8, макропористый низкоосновный аминоанионообменник Purolite A109, макропористый иминодиацетатный полиамфолит Purolite D24002, все в форме сферических гранул. При химическом осаждении металлов (Ag, Cu, Bi, Ni) в ионообменник регулировали размер наночастиц, используя различные восстановители (N₂H₄, Na₂S₂O₄, NaBH₄, (NH₂)₂CSO₂, H₂) и прекурсоры (AgCl, AgBr, AgI, AgOH), а также содержание металла за счет последовательного повторения циклов ионообменного насыщения и реагентного восстановления. Изучение микроструктуры, определение размера частиц металла и их распределения по размерам в НК проводили физическими методами: просвечивающей электронной микроскопией (ПЭМ) на приборе Zeiss Libra-120, сканирующей электронной микроскопией (СЭМ) на приборе Jeol JSM-6380LV, рентгенофазовым анализом (РФА) на дифрактометре Thermo ARL X'TRA. С целью изучения распределения металла вдоль радиального направления зерна проводили рентгеноспектральный микроанализ (PCMA) с помощью приставки сканирующего микроскопа INCA Energy – 250.

За движением фронтов окисления меди следили, наблюдая срезы зерен при помощи цифрового микроскопа DigiMicro 2.0 с 200-кратным увеличением. Скорость поглощения кислорода из воды металлсодержащими НК измеряли газометрическим методом с постоянной концентрацией растворенного кислорода. Исследование динамики поглощения кислорода проводили, пропуская воду с растворенным кислородом через колонку со слоем гранулированного нанокомпозита и регистрируя концентрацию кислорода в воде на выходе кислородомером АКПМ-1-01П.

Глава 3. Особенности получения нанокомпозитов металл-ионообменник с контролируемым размером и содержанием наночастиц. Посредством химического осаждения металлов в ионообменник КУ-23 получен набор нанокомпозитов с контролируемым размером и содержанием наночастиц металла различной природы (Cu, Ag, Bi, Ni).

Размер частиц регулировали на стадии формирования прекурсора. Так, получены серебросодержащие НК через стадию образования прекурсора

$$R^{-}Ag^{+} + K^{+}X^{-} \rightarrow [R^{-}K^{+}] \cdot AgX, \qquad (1)$$

где R⁻ – полимерная основа с фиксированными ионами, X⁻ – анион (Cl⁻, Br⁻, I⁻).

Согласно PCMA в ряду прекурсоров AgCl>AgBr>AgI происходит снижение доли восстановленных наночастиц серебра и соответственно уменьшение химической активности в реакции с растворенным кислородом, несмотря на уменьшение размера частиц (табл.1). На стадии формирования прекурсора за счет адсорбции анионов осадителя X⁻ (коионов) поверхности частиц галогенида серебра сообщается отрицательный заряд. Адсорбированные анионы, вероятно, блокируют поверхность прекурсора для молекул восстановителя, и поскольку в ряду анионов Cl¬Вг¬І¬ происходит увеличение их адсорбционной способности, то степень доступности поверхности образованных наночастиц для последующей реакции может также понижаться. Таким образом, повышенная адсорбция анионов может нивелировать проявление размерного эффекта.

Таблица 1 Доля восстановленного серебра в ионообменнике КУ-23 (восстановитель N_2H_4)

Прекурсор AgX	Доля восстановленного Ag (РСМА)	Размер частиц Ад (РФА) <i>d</i> , нм ¹	Степень полноты α окисления НК кислородом в расчете на общее содержание Ag при 200 мин	Степень полноты а окисления НК кислородом в расчете на фактическое содержание Ад при 200 мин
AgCl	0.96 ± 0.04	97 ± 5	0.20 ± 0.01	0.21 ± 0.01
AgBr	_	72 ± 3	0.19 ± 0.01	_
AgI	0.29 ± 0.04	37 ± 1	0.09 ± 0.01	0.31 ± 0.01

 $^{^{1}}$ Полянский Л.Н., Хорольская С.В. [и др.] // Журн. физ. химии. -2012. - Т.86, №4. - С. 728-735.

_

В результате химического осаждения металла в полимерную матрицу получены нанокомпозиты с различным содержанием металла. Исследована серия НК с емкостью ε по меди в пределах 1 – 10 мэкв/см³. Согласно данным ПЭМ при любом количестве металла типично преобладание очень мелких частиц, распределенных в нанометровом диапазоне размеров со средним диаметром 4-7 нм. Однако по результатам обработки рентгенографического эксперимента размеры кристаллитов в среднем лежат в пределах от 30 до 50 нм, а по данным метода СЭМ с увеличением содержания осажденной меди в матрице размеры частиц металла изменяются в области от 700 до 1200 нм. Все это свидетельствует о наноструктурированной природе допанта, частицы которого кооперированы в наблюдаемые микроскопически крупные агрегаты.

Из рис.1 видно, что отношение емкости к радиусу частиц агрегатов металла в кубе ε/r_0^3 , пропорциональное количеству агрегатов меди в единице объема НК, зависит от содержания металла характерным образом. Вплоть до пятого цикла осаждения данная величина практически пропорциональна емкости по меди, что говорит о преобладании процесса образования новых агрегатов над укрупнением существующих, тогда как начиная с шестой посадки металла, общее количество агрегатов частиц снижается. По всей видимости, это связано с возникновением общего перколяционного кластера, что подтверждается данными по электронной проводимости 2 .

Рис.1. Зависимость отношения ε/r_0^3 (r_0 по данным СЭМ) от содержания меди в зерне КУ-23.

Из вышеизложенного можно заключить, что в нанокомпозитах существует несколько уровней структурной организации металлического компонента.

Глава 4. Кинетические и динамические закономерности восстановления кислорода нанокомпозитами с частицами металлов различных по природе и содержанию. Полученные нанокомпозитные материалы, отличающиеся природой и содержанием внедренного металла, экспериментально исследовались в модельной реакции восстановления молекуляр-

ного кислорода, растворенного в воде. На рис.2 представлены кинетические кривые восстановления кислорода нанокомпозитами в различных ионных формах, содержащими частицы металлов Cu, Ag, Bi и Ni. Результаты исследования динамики редокс-сорбции для этих образцов представлены на рис.3 в виде зависимостей от времени отношения концентрации кислорода C в воде на выходе из зер-

_

 $^{^{2}}$ Чайка М.Ю. [и др.] // Журн. физ. химии. -2011. - Т. 85, № 6. - С. 1166-1172.

нистого слоя к концентрации C_0 на входе. Емкости по металлу используемых материалов соответствовали ионообменной емкости матрицы (1,1 мэкв/см³).

Рис.2. Кинетические кривые для степени полноты восстановления α молекулярного кислорода из воды нанокомпозитами $Ag^0\cdot KY-23$ (1) 1 , $Bi^0\cdot KY-23$ (2), $Cu^0\cdot KY-23$ (3) 1 , $Ni^0\cdot KY-23$ (4). Обозначения кривых: без штриха — H^+ -форма, со штрихом — Na^+ -форма.

Рис.4. Влияние константы скорости K реакции взаимодействия металла и O_2 на форму выходной кривой редокс-сорбции кислорода на зернистом слое НК при коэффициенте внутренней диффузии кислорода $D=5.72\cdot10^{-10}$ м²/с и различных K, м².5/(моль 0.5 · c): $I=1\cdot10^{-10}$, $Z=1\cdot10^{-9}$,

Рис.3. Динамические выходные кривые редокссорбции кислорода на зернистом слое НК в H⁺-форме: 1, 2 – Ag^0 ·КУ-23, 3 – Bi^0 ·КУ-23, 4 – Cu^0 ·КУ-23. Восстановители: 1 – (NH₂)₂CSO₂, 2 – N₂H₄, 3 и 4 – Na₂S₂O₄. Высота зернистого слоя ℓ = 0.12 м, скорость потока воды u = 4.8 м/ч, C_0 = 8.3 ± 0.02 мг/л.

По увеличению реакционной способности в отношении растворенного в воде кислорода и эффективности редокссорбции кислорода металлы в НК в Н⁺- и Na⁺-формах располагаются ряд Ag<Bi<Ni<Cu. Расчет константы скорости по известной размернозависимой модели динамики редокс-сорбции³ позволяет объяснить различный вид выходных кривых существенной ролью константы скорости реакции (рис.4). Скорость процесса на высокоактивных металлах приближается к предельному значению, что свидетельствует в пользу перехода от кинетического и смешанного контроля к внутридиффузионному, при котором размер частиц металла перестает быть значимым фактором. Наиболее полно процесс поглощения

 $^{^3}$ Кравченко Т.А. [и др.]. Нанокомпозиты металл-ионообменник. – М.: Наука, 2009. – 391 с.

кислорода происходит медьсодержащим нанокомпозитом.

Экспериментальные кинетические кривые восстановления кислорода НК с различным содержанием меди $(1-10 \text{ мэкв/см}^3)$ показали, что чем больше количество вводимого металла, тем больше поглощается кислорода, но тем медленнее исчерпывается емкость композита (рис.5). После некоторого критического содержания меди ($\varepsilon_{\text{Си}^0} \sim 5 \text{ мэкв/см}^3$), соответствующего порогу перколяции электронной проводимости, количество поглощенного кислорода выходит на предельный уровень, и дальнейшее увеличение емкости по металлу приводит к существенному снижению скорости процесса. По всей видимости, к моменту появления бесконечного кластера достигается максимум развития площади поверхности и дефектности структуры, образованной отдельными агрегатами (рис.1).

Рис.5. Объем поглощенного кислорода V_t (a) и степень полноты восстановления кислорода α_t (δ) ко времени процесса 60 (I), 120 (2), 240 мин (3) в зависимости от емкости ε нанокомпозита по металлу. Скорость перемешивания раствора 220 об/мин, концентрация кислорода 1.26 моль/м 3 .

Как установлено ранее³, при соизмеримости емкости по металлу и противоионам водорода НК в основном окисляется как совокупность изолированных частиц с образованием ионных продуктов, при этом скорость процесса определяется доставкой молекул кислорода к отдельной частице

$$[R-SO_3^-H^+]_2 \cdot Cu^0 \xrightarrow{O_2} (R-SO_3^-)_2 Cu^{2+} + H_2O.$$
 (2)

В НК с многократно осажденной медью после истощения ионообменной емкости реакция (2) сменяется на окисление металла с образованием оксидов (рис.6).

$$\left[(R-SO_3^-)_2 Cu^{2+} \right] \cdot Cu^0 \xrightarrow{O_2} \left[(R-SO_3^-)_2 Cu^{2+} \right] \cdot Cu_2 O \xrightarrow{O_2} \left[(R-SO_3^-)_2 Cu^{2+} \right] \cdot CuO$$
 (3)

Рис.6 показывает, что с возникновением проводящего кластера частицы металла окисляются кооперативно: возросшая плотность и проводимость частиц приводит к локализации редокс-реакции между кислородом и частицами металла в приповерхностном слое, что видно из сокращения толщины окисленной части зерна. Соответствующая схема пространственной структуры НК различной емкости при восстановлении кислорода приведена на рис.7.

Рис.6. Срезы гранул НК ко времени процесса окисления t, мин: a-25, $\delta-60$, $\varepsilon-120$, $\varepsilon-2\varepsilon-250$ мин. Слои продуктов окисления меди: $I-\text{Cu}^0$, $2-\text{Cu}^{2+}$, $3-\text{Cu}_2\text{O}$, 4-CuO. Емкость по меди $\varepsilon_{\text{Cu}^0}$, мэкв/см³: a-1.0, $\delta-\varepsilon-2.0$, $\partial-5.4$, e-7.1, $2\varepsilon-9.9$. Емкость по противоионам водорода $\varepsilon_{\text{H}^+}=1.1$ мэкв/см³.

Рис.7. Схема пространственной структуры НК с содержанием металла до (a) и после (δ) порога перколяции при окислении кислородом. Емкость по противоионам водорода 1.1 мэкв/см³. Обозначения: 1 — частицы металла, 2 — продукты окисления Cu^{2^+} , 3 — оксиды Cu_2O , CuO, 4 — внешняя диффузия кислорода, 5 — внутренняя диффузия кислорода по порам, 6 — движущаяся граница редокс-реакции, 7 — электроны.

Динамические выходные кривые, представленные на рис.8, указывают на значительное влияние количественного содержания металла в НК: с увеличением емкости НК до определенного предела время проскока кислорода на выходе наступает позднее. Вплоть до 5 циклов осаждения выходные кривые имеют острый фронт.

Оценку эффективности материалов проводили, принимая за критерий время проскока, при котором концентрация кислорода в фильтрате не превышает 10 мкг/л (10 ppb), что соответствует $C/C_0 \approx 0,001$. Следует отметить наличие максимума в зависимости этого времени от емкости по меди (кривая 1, рис.9). В силу различной скорости образования ионных и оксидных продуктов происходит их неравномерное распределение по высоте слоя. Максимум времени находится у порога перколяции проводимости и совпадает с предельным уровнем количества поглощаемого кислорода, выявленным в серии кинетических исследований. Таким образом, в кинетических свойствах индивидуальных частиц нанокомпозитов и динамических закономерностях поведения зернистого слоя НК прослеживается общность, состоящая в существовании оптимального соотношения количества поглощенного кислорода и содержания металла. Это условие соответствует содержанию металла, свыше которого образуется единый перколяционный кластер.

Рис.8. Выходные кривые редокс-сорбции кислорода из воды зернистым слоем нанокомпозита Cu^0 ·КУ-23(H⁺) с различной ёмкостью по меди ε , мэкв/см³: 1-0.9; 2-1.6; 3-2.4; 4-4.0; 5-6.6; 6-9.4. Высота слоя $\ell=0.3$ м, скорость протока u=20 м/ч, $C_0=0.19-0.24$ ммоль/л (6.08-7.52 мг/л).

Рис.9. Зависимость времени достижения заданной концентрации кислорода на выходе из зернистого слоя Cu^0 -КУ-23(H⁺) $C/C_0 = 0.001$ (1), 0.002 (2), 0.005 (3), 0.01 (4), 0.05 (5), 0.1 (6) от емкости НК.

Глава 5. Практическое приложение результатов работы. Показана возможность использования полученных результатов для поглощения растворенного кислорода из воды и концентрирования тяжелых металлов из растворов.

При циклическом обескислороживании воды в замкнутой системе концентрация кислорода на входе в фильтр изменяется во времени согласно условию материального баланса

$$\frac{\partial C(0,t)}{\partial t} = \frac{C(0,t) - C(\ell,t)}{V} \cdot uS, \ C(0,0) = C_0, \tag{4}$$

в котором C(0,t) — концентрация кислорода в водном резервуаре, полагающаяся одинаковой в каждый момент времени вследствие идеального перемешивания, $C(\ell,t)$ — концентрация кислорода, поступающего в резервуар, V — объем резервуара, S и ℓ — площадь сечения и высота зернистого слоя НК.

В табл.2 приведены характеристики процесса обескислороживания воды на зернистом слое медьсодержащего нанокомпозита $\mathrm{Cu^0}\cdot\mathrm{KY}\text{-}23$ высотой $\ell=0,7$ м и площадью сечения S=0,0034 м 2 в замкнутой системе объемом V=300 л. Из приведенных данных следует, что на зернистом слое медьсодержащего НК возможно продолжительное обескислороживание воды в замкнутом контуре, которое может поддерживаться не менее 4 тысяч часов.

Для реализации обескислороживающего фильтра был выбран нанокомпозит с ёмкостью по меди, соответствующей пяти циклам ионообменного насыщения – восстановления ($\varepsilon_{\text{си}^0} = 5,4$ мэкв/см³). Разработанный промышленный аппарат ус-

танавливался в контур отопительной системы с целью её защиты от внутренней коррозии за счет практически полного удаления кислорода из теплоносителя.

Таблица 2 Характеристики процесса глубокого обескислороживания воды в замкнутой системе нанокомпозитом ёмкостью $\varepsilon_{\text{Си}^0} = 6.6 \text{ мэкв/см}^3$

Скорость протока воды через фильтр	Пороговая кон- центрация ки- слорода в воде, прошедшей че- рез фильтр,	Время падения концентрации кислорода в воде до 10 мкг/л	Объем воды, прошедший через фильтр, м ³	Коэффи- циент по- лезного действия фильтра	Общее время ра- боты фильтра с учетом η,
и, м/ч	C, мкг/л	$t_{ m проскока}$, Ч	IVI	η , %	t_{η} , ч
20	10	29.5	2.00	70	4159
30	10	19.7	1.97	_	_

Рис.10. Концентрация кислорода на выходе из обескислороживающего фильтра в замкнутом водном контуре при пропускании воды через фильтры (1) и при отсутствии протока воды (2). Температура воды 25°C.

Таким образом, сконструированный аппарат рекомендуется использовать в периодическом режиме: вводить в действие при повышении концентрации кислорода и отключать при достижении заданного порогового значения.

Использование метода циклического химического осаждения металла позволило провести концентрирование электроотрицательного металла на ионообменных матрицах в виде его гидроксида. Сорбция

Проведенные испытания показали, что при эксплуатации аппарата в замкнутом контуре в период отключения нагрева содержание растворенного кислорода в воде снижается до ≤5 мкг/л и поддерживается на этом уровне (период 1, рис. 10). При отключении протока воды концентрация кислорода в системе повозрастает 2) степенно (период вследствие его проникновения из внешней среды через места соединений в контуре.

Рис. 11. Суммарная степень сорбции никеля из 0.125 М раствора хлорида никеля сорбентами в зависимости от номера цикла осаждения. Осадитель – гидроксид натрия.

ионов никеля из раствора хлорида никеля наиболее эффективно происходит макропористыми сульфокатионообменником КУ-23-15/100 и хелатобразующим ионообменником Purolite D24002 (рис.11). Последующее осаждение никеля в виде твердой фазы в порах матрицы освобождает ионогенные центры, что позволяет проводить повторные циклы сорбции. В результате после трех циклов химического осаждения никеля в статических условиях его количество на 170-250% превышает ионообменную емкость сорбентов.

ВЫВОДЫ

- 1. На свойства и структуру поверхности наночастиц металла, формирующихся в ионообменнике, существенное влияние оказывает природа прекурсора, в частности, галогенидов серебра, способных приобретать отрицательный заряд за счет адсорбции избытка галогенид-анионов на их поверхности, что сдерживает их коагуляцию и повышает агрегативную устойчивость. Вследствие этого в ряду CI¬Вг¬І¬ уменьшается степень полноты последующего восстановления прекурсора до наночастиц серебра и степень полноты реакции с кислородом.
- 2. В результате многократного чередования циклов химического осаждения меди в полимерную матрицу получен спектр нанокомпозитов с различным содержанием металла. В среднем по данным ПЭМ и РФА размеры кристаллитов меди лежат в пределах 4—7 нм и от 30 до 50 нм соответственно, что свидетельствует о наноструктурированной природе допанта, частицы которого объединены в наблюдаемые микроскопически агломераты. До пятого цикла осаждения меди преобладает образование новых агрегатов над укрупнением существующих. Начиная с шестой посадки металла, напротив, срастание и укрупнение имеющихся частиц преобладает над образованием новых, что, вероятно, связано с возникновением единого перколяционного кластера.
- 3. По увеличению скорости восстановления кислорода единичным зерном и степени редокс-сорбции кислорода на зернистом слое металлы в НК располагаются в ряд Ag<Bi<Ni<Cu. Время проскока кислорода существенным образом возрастает с увеличением константы скорости редокс-реакции кислорода с частицами металла и с переходом в область внутридиффузионного контроля, обеспечивающего максимальную скорость процесса.
- 4. По мере повышения содержания металла в полимере количество восстановленного кислорода единичным зерном растет и достигает предельных значений. При определенном содержании металла ионизация индивидуальных частиц с образованием противоионов металла сменяется окислением коллектива частиц с образованием слоев оксидных продуктов. Смена механизма происходит у порога перколяции электронной проводимости нанокомпозита и определяет максимальное количество поглощенного кислорода.

- 5. При редокс-сорбции кислорода, растворенного в воде, зернистым слоем нанокомпозита медь-ионообменник зависимость времени проскока кислорода в фильтрат от емкости НК по металлу обнаруживает экстремальный характер, максимум которой приходится на момент образования единого перколяционного кластера. На этом основании можно заключить, что НК материалы с ёмкостью по меди ~5 мэкв/см³ наиболее эффективны для глубокого удаления кислорода из воды.
- 6. На основании расчетов показана эффективность использования медьсодержащих нанокомпозитов для длительного и глубокого обескислороживания воды в замкнутых водных системах. Сконструировано устройство для глубокого обескислороживания воды, защищенное патентом и введенное в эксплуатацию в замкнутой системе теплоснабжения.
- 7. Многократное осаждение ионов никеля в виде труднорастворимых соединений в матрицах ионообменников позволяет эффективно с превышением ионообменной емкости на 170–250% извлекать и накапливать никель из водных растворов хлорида никеля.

Основное содержание диссертации изложено в следующих публикациях:

- 1. Химическое осаждение никеля в ионообменники и активные угли / *С.В. Хорольская*, Е.В. Золотухина, Л.Н. Полянский, С.В. Пешков, Т.А. Кравченко, В.А. Крысанов // Журн. физ. химии. 2010. Т.84, №12. С. 2377-2381.
- 2. Кинетика восстановления кислорода нанокомпозитом сереброионообменник / Т.А. Кравченко, Д.В. Конев, С.В. Пешков, Е.С. Киприянова, С.П. Стародубова, *С.В. Хорольская* // Журн. физ. химии. − 2011. − Т.85, №7. − С. 1302-1307.
- 3. Восстановительная сорбция молекулярного кислорода из воды нанодисперсными металлами в ионообменной матрице / Л.Н. Полянский, *С.В. Хорольская*, Т.А. Кравченко, С.В. Пешков, Е.С. Киприянова, С.П. Стародубова // Журн. физ. химии. 2012. Т.86, №4. С. 728-735.
- 4. Ионный обмен и редокс-реакция в нанокомпозитах металл-ионообменник / Е.С. Киприянова, Т.А. Кравченко, Д.В. Конев, *С.В. Хорольская* // Журн. физ. химии. 2012. Т.86, №7. С. 1245-1250.
- 5. Kravchenko T., *Khorolskaya S.*, Polyanskiy L., Kipriyanova E. Investigation of the mass transfer process in metal-ion-exchanger nanocomposites // Nanocomposites: Synthesis, Characterization and Applications / Ed. by X. Wang. N.Y.: Nova Science Publishers, 2013. P. 329-348.
- 6. *Khorolskaya S.V*. Effect of particle size and content of the metal on the oxygen reduction by silver—ion exchanger nanocomposites / *S.V. Khorolskaya*, T.A. Kravchenko, S.V. Peshkov // Сорбционные и хроматографические процессы. 2013. Т. 13, № 6. С. 794-802.

- 7. Кооперативные взаимодействия наночастиц металла в ионообменной матрице с растворенным в воде кислородом / *С.В. Хорольская*, Л.Н. Полянский, Т.А. Кравченко, Д.В. Конев // Журн. физ. химии. 2014. Т. 88, № 6. С. 1002-1009.
- 8. Устройство для глубокого обескислороживания воды в замкнутой системе / Полянский Л.Н., *Хорольская С.В.*, Крысанов В.А., Вахнин Д.Д., Кравченко Т.А. // Патент на полезную модель № 134527 RU U1 МПК C02F 9/04 (2006.01). Приоритеты: Заявка от 07.05.2013. Опубл. 20.11.2013. Бюл. № 32.
- 9. Kravchenko T.A. Macrokinetics of oxygen reduction by different nanostructured metals (Ag, Cu, Bi, Ni) in ion-exchanger matrixes / T.A. Kravchenko, *S.V. Khorolskaya*, S.V. Peshkov // International Conference «Ion Transport in Organic and Inorganic Membranes». Krasnodar, 2010 P. 94-95.
- 10. *Хорольская С.В.* Размерный фактор в восстановительной сорбции кислорода нанокомпозитом серебро-сульфокатионообменник / *С.В. Хорольская*, Т.А. Кравченко // V Всероссийская конференция «Фагран-2010». Воронеж, 2010. Т. II. С. 828-830.
- 11. *Khorolskaya S.* Effects of precursor and reducer on the structure of silver-ion-exchange nanocomposite / *S. Khorolskaya*, T. Kravchenko, E. Kipriyanova // International Conference «Ion Transport in Organic and Inorganic Membranes». Krasnodar, 2011 P. 81-83.
- 12. Dynamics of oxygen redox sorption by metal (Ag, Cu, Bi) ion exchanger nanocomposites / L. Polyanskiy, *S. Khorolskaya*, D. Konev, T. Kravchenko // International Conference «Ion Transport in Organic and Inorganic Membranes». Krasnodar, 2012 P. 172-174.
- 13. Investigation of the mass transfer process in the metal-ion-exchanger nanocomposites / T. Kravchenko, L. Polyanskiy, *S. Khorolskaya*, A. Kalinitchev // International Conference on Ion Exchange (IEX 2012). Cambridge (UK), 2012– P. 113-114.
- 14. Динамика редокс-сорбции кислорода нанокомпозитами металл (Ag, Cu, Bi) ионообменник / Т.А. Кравченко, Л.Н. Полянский, *С.В. Хорольская*, Д.В. Конев // VI Всероссийская конференция «Фагран-2012». Воронеж, 2012. С. 424-425.
- 15. *Khorolskaya S.* Physico-chemical evolution of metal nanoparticles in ion-exchanging matrix in open system / *S. Khorolskaya*, L. Polyanskiy, T. Kravchenko // International Conference «Ion Transport in Organic and Inorganic Membranes». Krasnodar, 2013 P. 123-125.