ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

на правах рукописи

МЕАЧ МОН

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ КОЛЕБАНИЙ СТРУННЫХ И СТЕРЖНЕВЫХ СИСТЕМ С ЛОКАЛИЗОВАННЫМИ ОСОБЕННОСТЯМИ

05.13.18 — Математическое моделирование, численные методы и комплексы программ

Диссертация на соискание ученой степени кандидата физико-математических наук

Научный руковолитель: кандидат физико-математических наук, доцент Шабров Сергей Александрович

Воронеж — 2014

Оглавление

	Вве	дение	4		
1	Ma	тематическая модель малых колебаний стилтьесов-			
	ской струны				
	1.1	Модель вынужденных колебаний струны со сосредоточен-			
		ными массами	14		
	1.2	Единственность решения математической модели вынуж-			
		денных колебаний струны с особенностями	20		
	1.3	Корректность математической модели малых колебаний			
		струны с произвольным распределением масс	25		
2	Ов	озможности применения метода Фурье	31		
	2.1	О разложении функций из Е в ряд Фурье по собственным			
		функциям	33		
	2.2	О некоторых свойствах собственных функций	42		
	2.3	Доказательство возможности применения метода Фурье .	45		
3	Математическая модель малых колебаний стержневой				
	сис	темы	50		
	3.1	Модель малых поперечных колебаний стержня с особенно-			
		СТЯМИ	50		
	3.2	Единственность решения математической модели малых			
		вынужденных колебаний стержневой системы	57		
	3.3	Корректность математической модели малых вынужден-			
		ных колебаний стержневой системы	62		
4	Адаптация метода конечных элементов для математиче-				
	ски	х моделей с негладкими решениями и численные экс-			
	пер	именты	78		
	4.1	Построение алгоритма для математической модели второ-			
		го порядка	78		
	4.2	Оценка скорости сходимости	82		

	4.3	Построение алгоритма для математической модели четвер-		
		того порядка	94	
	4.4	Оценка скорости сходимости	98	
	4.5	Численные эксперименты	102	
		4.5.1 Первый пример	102	
		4.5.2 Второй эксперимент	104	
	4.6	Комплекс программ для реализации численных экспери-		
		ментов	104	
	Закл	лючение	109	
Литература				
A	При	иложения	115	
	A.1	Текст программы Mon.1.3.0.py	115	

A.1	Текст программы Mon.1.3.0.ру	115
A.2	Значения приближенного решения в первом численном	
	эксперименте	122
A.3	Значения приближенного решения во втором численном	
	эксперименте	127

Актуальность темы. Математическое моделирование бурно развивается: расширяются объекты, как с позиций размерности, так и с учётом нелинейных составляющих изучаемого объекта. Несмотря на это остаются объекты, моделирование различных процессов в которых либо трудно формалируемо, либо невозможно. Это особенно актуально в случае, когда математическая модель реализуется в виде граничной задачи. В этом случае трудности, возникающие, как при анализе полученных моделей, так и при численном решении, вызваны отсутствием производных у решения (а в ряде случаев и «разрывностью» решения). Подобные проблемы обычно решаются с привлечением теории обобщенных функций (Завалищин С.Т., Сесекин А.Н., Дерр В.Я., Кинзебулатов Д.М., Владимиров В.С., Егоров Ю.В., Антосик П., Минусинский Я., Сикорский Р., Маслов В.П., Цупин В.А., Дыхта В.А., Самсонюк О.Н. и многие другие). На этом пути возникает ряд проблем, например, проблема интерпретации умножения обобщенной на разрывную, которая в классическом пространстве D' (линейных непрерывных функционалов над D – пространством бесконечно дифференцируемых финитных функций) неразрешима. Переходя к алгебре обобщенных функций Коломбо эту проблему пытаются «обойти». Но на этом пути возникают определенные трудности и неудобства при анализе решений. Для дифференциальных уравнений второго порядка, содержащих особенности типа δ-функции, удалось решить ряд вопросов качественной теории (Мышкис А.Д. и Владимиров А.А.). Другая проблема — слабая разрешимость краевых задач, что для приложений недостаточно.

Главное направление развития здесь диктовала спектральная теория. В спектральных вопросах наиболее эффективны теория обобщенных функций и теория операторов (Гельфанд И.М., Шилов Г.Е., Гохберг И.Ц., Крейн М.Г., Левитан Б.М., Саргсян И.С., Като Т., Марченко В.А., Рид М., Саймон Б., Альбеверио С., Гестези Ф., Хеэг-Крон Р., Хольден Х., Гасымов М.Г., Михайлец В.А., Винокуров В.А., Садовничий В.А., Нейман-заде М.И., Шкаликов А.А., Коготуаеv Е., Митягин Б.С., Хромов А.П., Савчук А.М., Ширяев Е.А., Djakov P., Джаков П., Нгупіv R.О., Мукутучк Ya.V. и многие другие).

Моделирование колебательных процессов струнных и стержневых систем возникают во многих отраслях естествознания и техники, и здесь можно отметить работы В.А. Ильина, Нахушева А.М., Нахушевой В.А., Знаменской Л.Н., Чабакаури Г.Д., Бахвалова Н.С., Эглит М.Э., Боровских А.В. и многих других. В то же время, как правило, наличие у внешней среды локализованных особенностей приводящих к потере гладкости у решения не рассматривались.

Еще одно направление развития — это качественная теория краевых задач на геометрическом графе, когда соответствующая граничная задача моделирует малые деформации системы, имеющей структуру графа. Такой подход очень эффективен, так как моделируемый объект занимает промежуточное положение между одномерными и двумерными объектами. В частности, для объектов имеющих разную структуру, приводящую к разным порядкам на различных ребрах (Покорный Ю.В., Пенкин О.М., Боровских А.В., Прядиев В.Л., Лазарев К.П., Nicaise S., Lumer G., Lagnese J.E., Leugering G., Schmidt E.J.P.G., Белоглазова Т.В., Дикарева Е.В., Перловская Т.В.). Однако, при создании названной теории предполагалась достаточная гладкость коэффициентов (за исключением, быть может конечного числа точек). В последнее время для негладких на ребрах коэффициентов стали появляться работы (Зверева М.Б.) устраняющие этот пробел.

Работы Стилтьеса о нити с бусинками, Крейна М.Г. и Гантмахера Ф.Р., Крейна М.Г. и Каца И.С. о произвольно нагруженной струне, работы Келлога О. обозначили направление исследований в интересах физической теории колебаний. Однако, через некоторое время исследования в этом направлении «замерли». И после выхода работ Ю.В. Покорного в 1999 и 2002 годах в Докладах Российской Академии Наук, это направление получило новую жизнь, наряду с интегралом Стилтьеса было предложено использование производных Радона–Никодима. Это направление исследования показало свою эффективность в теории граничных задач второго порядка: построена точная параллель классической теории обыкновенных дифференциальных уравнений (Покорный Ю.В., Шабров С.А., Зверева М.Б., Голованева Ф.В., Давыдова М.Б.)

Цели и задачи исследования. Разработка новых качественных и приближенных аналитических методов исследования математических моделей сложных физических систем, состоящих из струн, стержней, реализуемых в виде граничных задач для дифференциальных уравнений; разработка и обоснование эффективных численных методов и алгоритмов. Реализация цели исследования осуществляется решением следующих задач как теоретического, так и прикладного характера:

— вариационное обоснование математических моделей, описывающих малые деформации систем, состоящих из стержней, струн, помещенных во внешнюю с локализованными особенностями;

— доказательство корректности полученных математических моделей; — изучение возможности применения метода Фурье;

 — разработка эффективных численных методов решения граничных задач для уравнений второго и четвертого порядков (методы построения аналогов метода конечных элементов для математических моделей и сходимость приближенного решения к точному решению);

— разработка эффективных алгоритмов решения негладких граничных задач, а также разработка комплексов программ для ЭВМ с проведением вычислительных экспериментов на тестовых задачах;

— решение задач прикладного характера:

a) приближенное решение математических моделей, описывающих колебания неоднородной струны (с двумя закрепленными концами), находящейся во внешней среде с локализованными особенностями; б) приближенное решение дифференциальной модели, описывающей малые колебания консоли, находящейся в среде с особенностями.

Объект исследования. Качественные и приближенные аналитические методы исследования математических моделей систем, представляющих собой сложносочлененные одномерные конструкции, составленные из континуумов, которые взаимодействуют только через связующие их точки.

Методы исследования. Разработанные в диссертационной работе методы исследования математических моделей сложносочлененных систем основаны на фундаментальных методах современного качественного анализа, теории интеграла и меры, функционального анализа. Адаптированный метод конечных элементов для граничных задач с локализованными особенностями, его обоснование, полученное с использованием последних разработок вычислительных методов для уравнений с особенностями.

Основные положения, выносимые на защиту. На защиту выносятся качественные и приближенные аналитические методы исследования математических моделей, формализованных в виде единого уравнения с производными Радона-Никодима, численные методы и алгоритмы в виде комплексов проблемно-ориентированных программ.

1. Вариационное обоснование математических моделей, описывающих малые колебания систем, состоящих из стержней и струн, имеющих внутренние особенности, которые приводят к потере гладкости решения модели.

2. Доказательство корректности полученных математических моделей.

3. Разработка эффективных численных методов решения граничных

задач для уравнений второго и четвертого порядков (методы построения аналогов метода конечных элементов для математических моделей и оценка близости приближенного решения к точному решению).

4. Разработка эффективных алгоритмов решения негладких граничных задач, а также разработка комплексов программ для ЭВМ с проведением вычислительных экспериментов на тестовых задачах.

Научная новизна. 1. В диссертационной работе предлагаются новые подходы при анализе математических моделей, основополагающим математическим объектом которых является единое уравнение с производными по мере. 2. Доказана корректность математических моделей второго и четвертого порядков с производными по мере. 3. Метод конечных элементов адаптирован для математических моделей с производными по мере; доказана оценка близости приближенного решения к точному.

Теоретическая и практическая значимость. Теоретическая и практическая значимость резултатов и методов диссертационной работы заключается в возможности их использования в качестве инструментария для исследования математических моделей, описывающей колебания одномерных объектов с внутренними особенностями и особенностями, возникающих из-за наличия дефектов у внешней среды.

Разработаны эффективные численные методы применительно к математическим моделям с производными по мере. Представлены новые методы построения и анализа аналогов метода конечных элементов для граничных задач с производными Радона-Никодима. Получены оценки близости приближенного решения к точному для изучаемых линейных математических моделей. Представлены результаты тестирования полученных численных методов с применением ЭВМ.

Область исследования. Область исследования и содержание диссертации соответствует формуле специальности 05.13.18 — Математическое моделирование, численные методы и комплексы программ (физикоматематические науки), область исследования соответствует п. 1 «Разработка новых математических методов моделирования объектов и явлений», п. 2. «Разработка, обоснование и тестирование эффективных вычислительных методов с применением современных компьютерных технологий», п. 4 «Реализация эффективных численных методов и алгоритмов в виде комплексов проблемно-ориентированных программ для проведения вычислительного эксперимента».

Апробация работы. Результаты работы докладывались на конференциях «Современные методы теории краевых задач» на Воронежской весенней математической школы «Понтрягинские чтения» (Воронеж, 2013–2014 гг.), на семинарах профессора А.Д. Баева (2013–2014 гг.), профессора М.И. Каменского (2013–2014 гг.).

Публицации. Все результаты, изложенные в диссертации, получены автором самостоятельно. Из совместных работ в диссертацию включены только результаты полученные лично автором.

Объём и структура диссертации. Диссертационная работа состоит из введения, 4 глав, заключения, библиографического списка, состоящего из 46 наименований и 5 приложений, в которых приводятся листинги программ, написанных на Python и таблицы значений приближенного решения, которые получаются при проведении численных экспериментов. Работа изложена на 135 страницах и содержит 14 рисунков и 2 таблиц.

Основное содержание работы.

Во введении обосновывается актуальность темы, научная новизна, формулируются цели и задачи исследования.

В первой главе «Математическая модель малых колебаний стилтьесовской струны» изучается модель вынужденных колебаний струны со средоточенными массами, поменщенной во внешнюю среду с локализованными особенностями, и закрепленными концами. Пусть струна натянута вдоль отрезка $[0, \ell]$, имеющая произвольное распределение масс (включая и сосредоточенные массы), и закреплена на концах. Будем рассматривать малые поперечные колебания; смещения каждой точки происходят в одной плоскости, перпендикулярно положению равновесия струны. Через u(x, t) мы обозначим отклонения от положения равновесия точки x в момент времени t. Через M(x) обозначить массу участка [0; x) струны. Модель малых колебания реализуется в виде:

$$\begin{cases} M'_{\sigma}(x)\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial \sigma} \left(p(x)\frac{\partial u}{\partial x} \right) - u\frac{dQ}{d\sigma} + f(x,t), \\ u(0,t) = u(\ell,t) = 0, \\ u(x,0) = \varphi_0(x), \\ u'_t(x,0) = \varphi_1(x), \end{cases}$$
(1)

 $(\varphi_0(x)$ и $\varphi_1(x)$ — начальное отклонение от положения равновесия и начальная скорость соответственно). В точках ξ_i в которых имеются сосредоточенные силы, упругие опоры или сосредоточенные силы f(x,t); уравнение в (1) реализуется в виде:

$$\Delta M(\xi_i) \frac{\partial^2 u}{\partial t^2}(\xi_i, t) = \Delta \left(p \frac{\partial u}{\partial x} \right) (\xi_i, t) - u(\xi_i, t) \Delta Q(\xi_i, t) + f(\xi_i, t),$$

где $\Delta \varphi_i(\xi_i) = \varphi(\xi + 0) - \varphi(\xi - 0)$ — полный скачок функции $\varphi(x)$ в точке ξ_i .

Решение u(x,t) мы будем искать в классе E функций непрерывных по совокупности переменных, сама функция и ее производная u'_x при всех фиксированных x имеет непрерывные производные до второго порядка по переменной t; при каждом t u(x,t) абсолютно непрерывна по переменной x на отрезке $[0; \ell]$; первая производная $u'_x(x,t) - \sigma$ -абсолютно непрерывна по переменной x для всякого фиксированного t.

Уравнение в (1) задано при всех (x,t), принадлежащих декартовому произведению множеств $[0; \ell]_{\sigma}$ и [0; T]. Первое множество строится следующим образом. Пусть $S(\sigma)$ — множество точек разрыва функции $\sigma(x)$, которая порождает на $[0; \ell]$ меру σ . На $[0; \ell]$ введем метрику $\varrho(x; y) = |\sigma(x) - \sigma(y)|$. Достаточно очевидно, что ($[0; \ell], \varrho$) неполное метрическое пространство. Стандартное пополнение (с точностью до изоморфизма) приводит к множеству $[0; \ell]_{\sigma}$, в котором каждая точка $\xi \in S(\sigma)$ заменяется на тройку собственных элементов { $\xi - 0; \xi; \xi + 0$ }, причем $\xi - 0$ и $\xi + 0$ ранее были предельными.

Теорема 1. Пусть p(x), $Q(x) - \sigma$ -абсолютно непрерывны на $[0; \ell]$, inf p(x) > 0, Q(x) – неубывающая функция; f(x, t) – непрерывна по сокупности переменных. Математическая модель (1) не может иметь более одного решения, определенного на $\overline{[0; \ell]}_{\sigma} \times [0; T]$, в классе E.

Доказано, что (1) является корректной.

Во второй главе «О возможности применения метода Фурье» изучается возможность применение метода Фурье к задаче (1). Для этого некоторые свойства амплитудные функций. Доказана возможность применение метода разделения переменных, а именно доказана.

Теорема 2. Пусть $p(x), Q(x) - \sigma$ -абсолютно непрерывны на $[0; \ell]; p(x)$ отделена от нуля; Q(x) - не убывает на $[0; \ell]$. Пусть $\bar{\varphi_0}(x)$ и $\bar{\varphi_1}(x) - \sigma$ -абсолютно непрерывны на $[0; \ell];$ производные $\bar{\varphi_0}'(x)$ и $\bar{\varphi_1}'(x)$ имеют конечное на $[0; \ell]$ изменение; квазипроизводные $p(x)\bar{\varphi_0}'(x)$ и $p(x)\bar{\varphi_1}'(x) - \sigma$ -абсолютно непрерывны на $[0; \ell];$ функции $\frac{L(\bar{\varphi_0})(x)}{M'_{\sigma}(x)}$ и $\frac{L(\bar{\varphi_1})(x)}{M'_{\sigma}(x)}$ непрерывны на $[0; \ell]; \frac{L(\bar{\varphi_1})(x)}{M'_{\sigma}(x)} -$ абсолютно непрерывна и ее производная имеет конечное изменение на $[0; \ell]; \bar{\varphi_0}(0) = \bar{\varphi_0}(\ell) = L(\bar{\varphi_0})(0) = L(\bar{\varphi_0})(\ell) = \bar{\varphi_1}(\ell) = 0.$ Тогда, функция

$$u(x,t) = \sum_{k=1}^{\infty} \varphi_k(x) \left(A_k \cos \sqrt{\lambda_k} t + \frac{B_k}{\sqrt{\lambda_k}} \sin \sqrt{\lambda_k} t \right), \qquad (2)$$

где $\varphi_k(x)$ — нормированная амплитудная функция, отвечающая собственному значению λ_k ,

$$A_{k} = \int_{0}^{\ell} M'_{\sigma} \varphi_{k}(x) \bar{\varphi_{0}}(x) d\sigma,$$
$$B_{k} = \int_{0}^{\ell} M'_{\sigma} \varphi_{k}(x) \bar{\varphi_{1}}(x) d\sigma,$$

является решением математической модели

$$\begin{cases} M'_{\sigma}(x)\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial \sigma} \left(p(x)\frac{\partial u}{\partial x} \right) - u\frac{dQ}{d\sigma}, \\ u(0,t) = u(\ell,t) = 0, \\ u(x,0) = \varphi_0(x), \\ u'_t(x,0) = \varphi_1(x), \end{cases}$$

причем ряд (2) можно дифференцировать почленно по t дважды и по x, σ также дважды; полученные таким образом ряды сходятся абсолютно и равномерно на прямоугольнике $[0; l] \times [0, T]$.

В третье главе изучается математическая модель малых колебаний стержневой системы. Поместим начало координат в один из концов стержневой системы. Пусть в точках $\{\xi_i\}_{i=0}^{i=n}$ стержни соединены шарнирно и присутствует две пружины, одна - реагирующая на изгиб стержней, находящихся слева и справа от точки ξ_i , а вторая - на отклонение. Изучаемая система в состоянии покоя расположена вдоль некоторой прямой, по которой на правим ось абсцисс. Через u(x,t) обозначим отклонение от положения равновесия точки в момент времени. Будем рассматривать малые колебания, при которых каждая точка системы смещается перпендикулярно положению равновесия, т.е. оси Ox. В точки ξ_i поместим массы m_i . Математическая модель малые колебаний системы реализу-

ется в виде:

$$\begin{cases}
M'_{\sigma}(x)\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial \sigma} \left(p(x)\frac{\partial u}{\partial x} \right) - u\frac{dQ}{d\sigma} + f(x,t), \\
u(0,t) = u(\ell,t) = 0, \\
u(x,0) = \overline{\varphi_0}(x), \\
u'_t(x,0) = \overline{\varphi_1}(x),
\end{cases}$$
(3)

Показана корректность модели (2).

В четвертой главе «Адаптация метода конечных элементов» метод конечных элементов адаптируется на изучаемые модели.

Приближенное решение $u_N(x,t)$ математической модели

$$\begin{cases} M'_{\sigma}(x)\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial \sigma}\left(p(x)\frac{\partial u}{\partial x}\right) - u\frac{dQ}{d\sigma} + f(x,t),\\ u(0,t) = u(\ell,t) = 0,\\ u(x,0) = \overline{\varphi}_0(x),\\ u'_t(x,0) = \overline{\varphi}_1(x), \end{cases}$$

будем искать в виде

$$u_N(x,t) = \sum_{k=1}^{N-1} a_k(t)\varphi_k(x),$$

где $a_k(t)$ — неизвестные дважды непрерывно дифференцируемые функции, $\varphi_k(x)$ — базисные функции, определяемые следующим образом. Отрезок $[0; \ell]$ разобьем на N равных (для удобства) частей, и

$$\varphi_k(x) = \begin{cases} (x - x_{k-1})\frac{N}{\ell}, & \text{если } x \in [x_{k-1}; x_k] \\ (x_{k+1} - x)\frac{N}{\ell}, & \text{если } x \in (x_k; x_{k+1}] \\ 0, & \text{если } x \notin [x_{k-1}; x_{k+1}] \end{cases}$$

здесь $x_k = k \frac{\ell}{N}, \ k = 0, 1, 2, \dots, N.$ Доказана теорема.

Теорема 3. Пусть $M'_{\sigma}(x) > 0, Q'_{\sigma} \ge 0, p(x) > 0$ и начальные условия $\overline{\varphi}_0(x)$ и $\overline{\varphi}_1(x)$ таковы, что математическая модель

$$\begin{cases} M'_{\sigma}(x)\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial \sigma} \left(p(x)\frac{\partial u}{\partial x} \right) - u\frac{dQ}{d\sigma} + f(x,t), \\ u(0,t) = u(\ell,t) = 0, \\ u(x,0) = \overline{\varphi}_0(x), \\ u'_t(x,0) = \overline{\varphi}_1(x), \end{cases}$$
(4)

имеет единственное решение в классе E; u(x,t) и $u_N(x,t)$ — точное и приближенное, найденное с помощью адаптированного метода конечных элементов, решения. Тогда, справедливо неравенство

$$\max_{0 \leqslant t \leqslant T} \left(\int_{0}^{\ell} w_{t}^{\prime^{2}}(x,t) \, dM + \int_{0}^{\ell} w_{x}^{\prime^{2}}(x,t) \, dx + \int_{0}^{\ell} w^{2}(x,t) \, dQ \right)^{1/2} \leqslant \overline{C} \cdot \sqrt{h}.$$

Приближенное решение $u_N(x,t)$ математической модели

$$\begin{cases} M'_{\sigma}(x)\frac{\partial^2 u}{\partial t^2} = -\frac{\partial}{\partial \sigma}\frac{\partial}{\partial x}\left(p(x)\frac{\partial^2 u}{\partial x^2}\right) + \frac{\partial}{\partial \sigma}\left(r(x)\frac{\partial u}{\partial x}\right) - u\frac{dQ}{d\sigma} + f(x,t),\\ u(0,t) = u''_{xx}(0,t) = u''_{xx}(\ell,t) = u(\ell,t) = 0,\\ u(x,0) = \overline{\varphi}_0(x),\\ u'_t(x,0) = \overline{\varphi}_1(x), \end{cases}$$
(5)

будем искать в виде

$$u_N(x,t) = \sum_{k=1}^{N-1} a_{2k-1}(t)\varphi_{2k-1}(x) + \sum_{k=0}^{N} a_{2k}(t)\varphi_{2k}(x),$$

где $a_k(t)$ — неизвестные дважды непрерывно дифференцируемые функции, $\varphi_k(x)$ — базисные функции, определяемые следующим образом. Отрезок $[0; \ell]$ разобьем на N равных (для удобства) частей, и

$$\varphi_{2k-1}(x) = \begin{cases} 1 - 3\left(\frac{x - x_k}{h}\right)^2 - 2\left(\frac{x - x_k}{h}\right)^3, & x \in [x_k - h, x_k] \\ 1 - 3\left(\frac{x - x_k}{h}\right)^2 + 2\left(\frac{x - x_k}{h}\right)^3, & x \in [x_k, x_k + h] \\ 0, & \text{остальные } x. \end{cases}$$

$$\varphi_{2k}(x) = \begin{cases} (x - x_k) \left(1 + \frac{x - x_k}{h}\right)^2, & x \in [x_k - h, x_k] \\ (x - x_k) \left(1 - \frac{x - x_k}{h}\right)^2, & x \in [x_k, x_k + h] \\ 0, & \text{остальные } x. \end{cases}$$

здесь $x_k = k \frac{\ell}{N}, \ k = 0, 1, 2, \dots, N.$

Теорема 4. Пусть $M'_{\sigma}(x) > 0, \ Q'_{\sigma} \ge 0, \ p(x) > 0, \ r(x) \ge 0$ и начальные

условия $\overline{\varphi}_0(x)$ и $\overline{\varphi}_1(x)$ таковы, что математическая модель

$$\begin{pmatrix}
M'_{\sigma}(x)\frac{\partial^2 u}{\partial t^2} = -\frac{\partial}{\partial\sigma}\frac{\partial}{\partial x}\left(p(x)\frac{\partial^2 u}{\partial x^2}\right) + \frac{\partial}{\partial\sigma}\left(r(x)\frac{\partial u}{\partial x}\right) - u\frac{dQ}{d\sigma} + f(x,t), \\
u(0,t) = u''_{xx}(0,t) = u''_{xx}(\ell,t) = u(\ell,t) = 0, \\
u(x,0) = \overline{\varphi}_0(x), \\
u'_t(x,0) = \overline{\varphi}_1(x),
\end{cases}$$
(6)

имеет единственное решение в классе E; u(x,t) и $u_N(x,t)$ — точное и приближенное, найденное с помощью адаптированного метода конечных элементов, решения.

Тогда, справедливо неравенство

$$\max_{0 \leqslant t \leqslant T} \left(\int_{0}^{\ell} w_{t}^{\prime^{2}}(x,t) \, dM + \int_{0}^{\ell} p(x) w_{xx}^{\prime\prime^{2}}(x,t) \, dx + \int_{0}^{\ell} p(x) w_{x}^{\prime^{2}}(x,t) \, dx + \int_{0}^{\ell} w^{2}(x,t) \, dQ \right)^{1/2} \leqslant \overline{C} \cdot h, \quad (7)$$

Проведены численные эксперименты с помощью комплекса программ, написанных языке программирования Python.

Дано описание алгоритма комплекса программ.

В заключении излагаются основные результаты диссертации.

Глава 1

Математическая модель малых колебаний стилтьесовской струны

В этой главе изучается математическая модель малых вынужденных поперечных колебаний, накрепленной на концах, струны с произвольным распределением масс (включая сосредоточенные массы), помещенной во внешнюю среду, которая допускает локализованные особенности типа пружин, приводящие к потере гладкости у решения.

1.1 Модель вынужденных колебаний струны со сосредоточенными массами

Здесь мы рассмотрим модель колебания натянутой вдоль отрезка $[0, \ell]$ струны, имеющей произвольное распределение масс (включая и сосредоточенные массы) с закрепленными концами. Будем рассматривать малые поперечные колебания; смещения каждой точки происходят в одной плоскости, перпендикулярно положению равновесия струны. Через u(x,t) мы обозначим отклонения от положения равновесия точки x в момент времени t. Если через M(x) обозначить массу участка [0; x) струны, то кинетическая энергия струны выражается формулой

$$T = \frac{1}{2} \int_{0}^{\ell} \left(\frac{\partial u}{\partial t}(x,t) \right)^{2} dM(x).$$

Обозначим через p(x) — силу натяжения струны в точке x; dQ(x) — локальный коэффициент упругости внешней среды; F(x,t) — сумму всех сил, приложенных к участку [0; x) в момент времени t. Тогда потенци-

альная энергия равна

$$U = \frac{1}{2} \int_{0}^{\ell} p(x) \left(\frac{\partial u}{\partial x}\right)^2 dx + \frac{1}{2} \int_{0}^{\ell} u^2(x,t) dQ(x) - \int_{0}^{\ell} u(x,t) d_x F(x,t).$$

где индекс x у дифференциала в последнем интеграле означает, что интегрирование осуществляется по переменной x.

Пусть функция $\sigma(x)$, порождающая на $[0; \ell]$ меру σ , такая, что функции Q(x) и M(x) являются σ -абсолютно непрерывными на $[0; \ell]$ и

$$F(x,t) = F(0,t) + \int_{0}^{x} f(x,t) \, d\sigma(x)$$

при всех $t \in [0; T]$. (Последнее по сути означает, что $F(x, t) - \sigma$ абсолютно непрерывна по x на $[0; \ell]$ при каждом фиксированном t.)

Интеграл Остроградского-Гамильтона в этом случае принимает вид

$$\int_{t_0}^{t_1} (T-U) dt = \int_{t_0}^{t_1} \int_{0}^{\ell} \frac{1}{2} \left(\frac{\partial u}{\partial t}\right)^2 M'_{\sigma}(x) d\sigma(x) dt - \frac{1}{2} \int_{t_0}^{t_1} \int_{0}^{\ell} p(x) \left(\frac{\partial u}{\partial x}\right)^2 dx dt - \frac{1}{2} \int_{t_0}^{t_1} \int_{0}^{\ell} \left(u^2(x,t)Q'_{\sigma}(x) - 2u(x,t)f(x,t)\right) d\sigma(x) dt. \quad (1.1.1)$$

Функционал (1.1.1) мы будем рассматривать на множестве E функций u(x,t) каждая из которых непрерывна по совокупности переменных на множестве $I = [0; \ell] \times [0; T]$; при каждом фиксированном x имеет непрерывные частные произвольные по t до второго порядка включительно; при каждом фиксированном t по переменной $x \ u(x,t)$ абсолютно непрерывна, $p(x)u'_x(x,t) \ \sigma$ -абсолютно непрерывна.

Согласно вариационному принципу Остроградского–Гамильтона, среди возможных движений струны в действительности осуществляется движение дающее стационарное значение функционалу (1.1.1). Другими словами, первая вариация (1.1.1) равна нулю:

$$\int_{t_0}^{t_1} \int_{0}^{\ell} u'_t(x,t) h'_t(x,t) M'_{\sigma}(x) \, d\sigma(x) \, dt - \int_{t_0}^{t_1} \int_{0}^{\ell} p(x) u'_x(x,t) h'_x(x,t) \, dx \, dt -$$

$$-\int_{t_0}^{t_1}\int_{0}^{\ell} u(x,t)h(x,t)Q'_{\sigma}(x)\,d\sigma(x)\,dt + \int_{t_0}^{t_1}\int_{0}^{\ell} h(x,t)f(x,t)\,d\sigma(x)\,dt = 0$$
(1.1.2)

для всякой допустимой h, т. е. принадлежащей E и обращающейся в нуль на границе прямоугольника $[0; \ell] \times [t_0; t_1]$.

Применим к интегралу $\int_{t_0}^{t_1} \int_{0}^{t} M'_{\sigma}(x) u'_t(x,t) h'_t(x,t) \, d\sigma(x) \, dt$ теорему Фу-

бини, и внутренний интеграл проинтегрируем по частям:

$$\int_{t_0}^{t_1} \int_{0}^{\ell} M'_{\sigma}(x) u'_t(x,t) h'_t(x,t) \, d\sigma(x) \, dt =$$

$$= \int_{0}^{\ell} M'_{\sigma}(x) \int_{t_0}^{t_1} u'_t(x,t) h'_t(x,t) \, dt \, d\sigma(x) =$$

$$= \int_{0}^{\ell} \left[u'_t(x,t) h(x,t) \Big|_{t=t_0}^{t=t_1} - \int_{t_0}^{t_1} h(x,t) u''_{tt}(x,t) \, dt \right] \, d\sigma(x) =$$

$$= -\int_{t_0}^{t_1} \int_{0}^{\ell} M'_{\sigma}(x) h(x,t) u''_{tt}(x,t) \, d\sigma(x) \, dt \quad (1.1.3)$$

(в последнем равенстве мы снова применили теорему Фубини), так как $h(x,t_0) = h(x,t_1) = 0$. Следует отметить, что интегрирование по частям внутреннего интеграла в (1.1.3) законно в силу свойств функций из класса E.

Внутренний интеграл в интеграле $\int_{t_0}^{t_1} \int_{0}^{\ell} p(x) u'_x(x,t) h'(x,t) dx dt$ также проинтегрируем по частям (что законно в силу свойств функций из E):

$$\int_{0}^{\ell} p(x)u'_{x}(x,t)h'_{x}(x,t) dx =$$
$$= p(x)u'_{x}(x,t)h(x,t)\Big|_{x=0}^{x=\ell} - \int_{0}^{\ell} h(x,t) d_{x} \left(p(x)u'_{x}(x,t)\right) =$$

$$= -\int_{0}^{\ell} h(x,t) \left(p(x)u'_{x}(x,t) \right)'_{\sigma} d\sigma(x), \quad (1.1.4)$$

так как $h(0,t) = h(\ell,t) = 0$ и $p(x)u'_x(x,t)$ σ -абсолютно непрерывна на $[0;\ell]$ при каждом фиксированном t. Теперь, (1.1.2), с учетом (1.1.3) и (1.1.4), принимает вид

$$\begin{split} &-\int_{t_0}^{t_1} \int_{0}^{\ell} M'_{\sigma}(x)h(x,t)u''_{tt}(x,t) \, d\sigma(x) \, dt + \\ &+\int_{t_0}^{t_1} \int_{0}^{\ell} h(x,t) \left(p(x)u'_{x}(x,t) \right)'_{\sigma} \, d\sigma(x) \, dt - \int_{t_0}^{t_1} \int_{0}^{\ell} h(x,t)u(x,t)Q'_{\sigma}(x) \, d\sigma(x) \, dt + \\ &+ \int_{t_0}^{t_1} \int_{0}^{\ell} h(x,t)f(x,t) \, d\sigma(x) \, dt = 0, \end{split}$$

или, объединяя все интегралы в один,

$$\int_{t_0}^{t_1} \int_{0}^{\ell} h(x,t) \left[-M'_{\sigma}(x)u''_{tt}(x,t) + (p(x)u'_{x}(x,t))'_{\sigma} - u(x,t)Q'_{\sigma}(x) + f(x,t) \right] d\sigma(x) dt = 0. \quad (1.1.5)$$

Дальнейшие рассуждения основаны на аналоге леммы Лагранжа.

Лемма 1.1.1 (Аналог леммы Лагранжа). Пусть A(x,t) равномерно ограничена на $[0; \ell]$; σ -суммируема на $[0; \ell]$ при каждом фиксированном $t \in [t_0; t_1]$; непрерывна по t при всех $x \in [0; \ell]$; интеграл $\int_{t_0}^{t_1} \int_{0}^{\ell} A(x,t)h(x,t) d\sigma(x) dt$ равен нулю для каждой функции h(x,t), при-

надлежащей классу E, и обращающейся в нуль на границе прямоугольника $I = [0; \ell] \times [t_0; t_1]$. Тогда A(x, t) равна нулю почти всюду относительно меры $\sigma \times t$.

Доказательство. Из условий леммы следует измеримость A(x,t) на прямоугольнике I, следовательно, существует последовательность $\{A_n(x,t)\}$ непрерывных на I функций, которая сходится к A(x,t) почти всюду (по мере $\sigma \times t$). Из теоремы Егорова [34] находим, что для

любого $\varepsilon > 0$ можно указать такое измеримое множество $Q, \sigma \times t$ -мера дополнения $I \setminus Q$ меньше $\frac{\varepsilon}{K} (K - \sigma \times t$ -мера I) и $A_n(x,t)$ сходится к A(x,t) равномерно на Q.

Для дальнейшего удобства введем следующие обозначения: $dS = d\sigma \times dt$ и $\mu(\widehat{I}) - \sigma \times t$ -мера измеримого множества \widehat{I} .

Покажем, что справедливо следующее утверждение.

Утверждение 1.1.1. Пусть $A_n(x,t)$ непрерывны по совокупности переменных; для любого $\varepsilon > 0$ найдется такое натуральное N, что для всех $n \ge N$ справедливо неравенство

$$\left| \int_{I} A_n h \, dS \right| < \frac{\varepsilon}{K}$$

для всякой непрерывной h, равной нулю на границе I. Тогда для всех $(x,t) \in I |A_n(x,t)| < \varepsilon$, как только n > N.

Доказательство. Предположим, что утверждение неверно, т. е. для любого $\varepsilon > 0$ найдется точка $(x^*, t^*) \in I$ такая, что $|A_n(x^*, t^*)| \ge \varepsilon$. Зафиксируем $\varepsilon > 0$ произвольным образом. Так как $A_n(x, t)$ непрерывна и $|A_n(x^*, t^*)| \ge \varepsilon$, то $A_n(x^*, t^*)$ сохраняет знак в некоторой окрестности точки (x^*, t^*) . Пусть для определенности значение $A_n(x^*, t^*)$ положительно. Тогда, существует $\delta_1 > 0$ такое, что $A_n(x^*, t^*) > \frac{\varepsilon}{2}$ для всех $(x, t) \in I_1 = [x^* - \delta_1; x^* + \delta_1] \times [t^* - \delta_1; t^* + \delta_1]$. Рассмотрим функцию h(x, t), равную $\frac{2}{K \cdot \mu(\widehat{I})}$ на $\widehat{I} = \left[x^* - \frac{\delta_1}{2}; x^* + \frac{\delta_1}{2}\right] \times \left[t^* - \frac{\delta_1}{2}; t^* + \frac{\delta_1}{2}\right]$ ($\mu(\widehat{I}) - \sigma \times t$ -мера множества \widehat{I}), нулю на дополнении к I_1 , и продол-

 $(\mu(I) - \delta \times t$ -мера множества I), нулю на дополнении к I₁, и продолженную на $I_1 \setminus \widehat{I}$ непрерывным образом так, чтобы $h(x,t) \ge 0$ на всем I. Для этой функции справедлива цепочка неравенств

$$\frac{\varepsilon}{K} > \left| \int_{I} A_{n}h \, dS \right| = \left| \int_{I_{1}} A_{n}h \, dS \right| = \int_{I_{1}} A_{n}h \, dS \ge \int_{\widehat{I}} A_{n}h \, dS \ge$$
$$\geq \frac{\varepsilon}{2} \cdot \frac{2}{K\mu(\widehat{I})} \int_{\widehat{I}} 1 \cdot dS = \frac{\varepsilon}{K\mu(\widehat{I})}\mu(\widehat{I}) = \frac{\varepsilon}{K},$$

которая приводит к противоречивому неравенству $\frac{\varepsilon}{K} > \frac{\varepsilon}{K}$.

Вернемся к доказательству леммы. Покажем, что абсолютную величину интеграла $\int_{I} A_n \, dS$ можно сделать меньше любого наперед заданного положительного числа ε . Имеем

$$\begin{aligned} \left| \int_{I} A_{n}h \, dS \right| &= \left| \int_{I} (A_{n} - A)h \, dS \right| \leqslant \\ &\leqslant \int_{Q} |A_{n} - A| \cdot |h| \, dS + \int_{I \setminus Q} |A_{n} - A| \cdot |h| \, dS \leqslant \varepsilon \cdot \int_{Q} |h| \, dS + 2\overline{K} \int_{I \setminus Q} |h| \, dS \leqslant \\ &\leqslant \varepsilon \cdot M^{*} \cdot K + 2\overline{K} \cdot M^{*} \cdot \varepsilon, \end{aligned}$$

где $M^* = \max_{(x,t)} |h(x,t)|, \overline{K} = \max\left\{\max_{(x,t)} |A_n(x,t)|, \sup_{(x,t)} |A(x,t)|\right\} < \infty.$ Таким образом, *n* можно взять настолько большим, что

$$\left| \int_{I} A_n h \, dS \right| < \frac{\varepsilon}{K}$$

и, из утверждения вытекает, что $|A_n(x,t)| < \varepsilon$ для всех $(x,t) \in I$. Переходя в последнем неравенстве к пределу при $n \to \infty$, получим, что $|A(x,t)| < \varepsilon$ для почти всех $(x,t) \in I$. В силу произвольности ε мы и получаем утверждение леммы.

На основании леммы, из (1.1.5) мы получаем уравнение

$$-M'_{\sigma}(x)u''_{tt}(x,t) + (p(x)u'_{x}(x,t))'_{\sigma} - u(x,t)Q'_{\sigma}(x) + f(x,t) = 0,$$

дополнив которое граничными условиями

$$u(0,t) = u(\ell,t) = 0$$

и начальными

$$u(x,0) = \varphi_0(x), u'_t(x,0) = \varphi_1(x),$$

мы получим математическую модель, которая описывает малые вынужденные колебания стилтьесовской струны.

В последующим параграфах мы изучим полученную модель.

1.2 Единственность решения математической модели вынужденных колебаний струны с особенностями

В этом параграфе доказывается единственность решения математической модели

$$\begin{cases} M'_{\sigma}(x)\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial \sigma} \left(p(x)\frac{\partial u}{\partial x} \right) - u\frac{dQ}{d\sigma} + f(x,t), \\ u(0,t) = u(\ell,t) = 0, \\ u(x,0) = \varphi_0(x), \\ u'_t(x,0) = \varphi_1(x), \end{cases}$$
(1.2.1)

которая возникает при описании малых вынужденных колебаний стилтьесовской струны (расположенной вдоль отрезка $[0; \ell]$, с закрепленными концами; $\varphi_0(x)$ и $\varphi_1(x)$ — начальное отклонение от положения равновесия и начальная скорость соответственно), помещенной во внешнюю среду с локализованными особенностями, с произвольным распределением масс, включая случай сосредоточенных масс. Вторая производная по пространственной переменной в правой части уравнения в (1.2.1) понимается как производная по мере σ , которая включает в себя все особенности параметров модели (M(x) — распределение масс, p(x) — силы натяжения струны в точке x; dQ — локальный коэффициент упругости внешней среды; точки в которых приложены сосредоточенные силы внешней силы f(x,t); в таких точках ξ_i уравнение в (1.2.1) понимается следующим образом

$$\Delta M(\xi_i) \frac{\partial^2 u}{\partial t^2}(\xi_i, t) = \Delta \left(p \frac{\partial u}{\partial x} \right) (\xi_i, t) - u(\xi_i, t) \Delta Q(\xi_i, t) + f(\xi_i, t),$$

где $\Delta \varphi_i(\xi_i) = \varphi(\xi + 0) - \varphi(\xi - 0)$ — полный скачок функции $\varphi(x)$ в точке ξ_i .

Решение u(x,t) мы будем искать в классе E функций непрерывных по совокупности переменных, сама функция и ее производная u'_x при всех фиксированных x имеет непрерывные производные до второго порядка по переменной t; при каждом t u(x,t) абсолютно непрерывна по переменной x на отрезке $[0; \ell]$; первая производная $u'_x(x,t) - \sigma$ -абсолютно непрерывна по переменной x для всякого фиксированного t.

Уравнение в (1.2.1) задано при всех (x, t), принадлежащих декартовому произведению множеств $\overline{[0; \ell]}_{\sigma}$ и [0; T]. Первое множество строится следующим образом. Пусть $S(\sigma)$ — множество точек разрыва функции $\sigma(x)$, которая порождает на $[0; \ell]$ меру σ . На $[0; \ell]$ введем метрику $\varrho(x; y) = |\sigma(x) - \sigma(y)|$. Достаточно очевидно, что $([0; \ell], \varrho)$ неполное метрическое пространство. Стандартное пополнение (с точностью до изоморфизма) приводит к множеству $\overline{[0; \ell]}_{\sigma}$, в котором каждая точка $\xi \in S(\sigma)$ заменяется на тройку собственных элементов $\{\xi - 0; \xi; \xi + 0\}$, причем $\xi - 0$ и $\xi + 0$ ранее были предельными.

Теорема 1.2.1. Пусть p(x), $Q(x) - \sigma$ -абсолютно непрерывны на $[0; \ell]$, inf p(x) > 0, Q(x) – неубывающая функция; f(x,t) – непрерывна по сокупности переменных. Математическая модель (1.2.1) не может иметь более одного решения, определенного на $[0; \ell]_{\sigma} \times [0; T]$, в классе E.

Доказательство. Предположим, что существуют два различных решения $u_1(x,t)$ и $u_2(x,t)$, определенных на $\overline{[0;\ell]}_{\sigma} \times [0;T]$, модели (1.2.1). Тогда разность $u(x,t) = u_1(x,t) - u_2(x,t)$ является решением модели

$$\begin{cases} M'_{\sigma}(x)\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial \sigma} \left(p(x)\frac{\partial u}{\partial x} \right) - uQ'_{\sigma}, \\ u(0,t) = u(\ell,t) = u(x,0) = u'_t(x,0) = 0. \end{cases}$$
(1.2.2)

Рассмотрим интеграл

$$\int_{0}^{T^{*}} \int_{0}^{\ell} \frac{\partial u}{\partial t} \left(M'_{\sigma}(x) \frac{\partial^{2} u}{\partial t^{2}} - \frac{\partial}{\partial \sigma} \left(p(x) \frac{\partial u}{\partial x} \right) + u Q'_{\sigma} \right) \, d\sigma \, dt, \qquad (1.2.3)$$

где $T^* \in (0, T]$. Так как u(x, t) удовлетворяет (1.2.2), то интеграл (1.2.3) равен нулю. Разобьём его на три

$$\int_{0}^{T^*} \int_{0}^{\ell} \frac{\partial u}{\partial t} M'_{\sigma}(x) \frac{\partial^2 u}{\partial t^2} \, d\sigma \, dt, \qquad (1.2.4)$$

$$-\int_{0}^{T^{*}}\int_{0}^{\ell}\frac{\partial u}{\partial t}\frac{\partial}{\partial\sigma}\left(p(x)\frac{\partial u}{\partial x}\right)\,d\sigma\,dt\tag{1.2.5}$$

И

$$\int_{0}^{T^*} \int_{0}^{\ell} \frac{\partial u}{\partial t} u Q'_{\sigma} \, d\sigma \, dt.$$
(1.2.6)

В силу теоремы о замене в интеграле Стилтьеса (см., напр., [32]) и свойств функций из *E*, интеграл (1.2.4) допускает перезапись

$$\int_{0}^{T^{*}} \int_{0}^{\ell} \frac{\partial u}{\partial t} M_{\sigma}'(x) \frac{\partial^{2} u}{\partial t^{2}} d\sigma dt = \int_{0}^{T^{*}} \int_{0}^{\ell} \frac{1}{2} \frac{\partial}{\partial t} \left(\left(\frac{\partial u}{\partial t} \right)^{2} \right) dM dt =$$
$$= \frac{1}{2} \int_{0}^{\ell} \left(\left(\frac{\partial u}{\partial t}(x, T^{*}) \right)^{2} - \left(\frac{\partial u}{\partial t}(x, 0) \right)^{2} \right) dM = \frac{1}{2} \int_{0}^{\ell} \left(\frac{\partial u}{\partial t}(x, T^{*}) \right)^{2} dM,$$

так как $\frac{\partial u}{\partial t}(x,0) = 0.$

Оі Внутренний интеграл в (1.2.5) проинтегрируем по частям

$$-\int_{0}^{T^{*}} \left(\int_{0}^{\ell} \frac{\partial u}{\partial t} \frac{\partial}{\partial \sigma} \left(p(x) \frac{\partial u}{\partial x} \right) d\sigma \right) dt =$$

$$= -\int_{0}^{T^{*}} \left(\frac{\partial u}{\partial t} p(x) \frac{\partial u}{\partial x} \Big|_{x=0}^{x=\ell} - \int_{0}^{\ell} p(x) \frac{\partial u}{\partial x} d_{x} \left(\frac{\partial u}{\partial t} \right) \right) dt =$$

$$= \int_{0}^{T^{*}} \int_{0}^{\ell} p(x) \frac{\partial u}{\partial x} d_{x} \left(\frac{\partial u}{\partial t} \right) dt,$$

так как $\frac{\partial u}{\partial x}(0,t) = \frac{\partial u}{\partial x}(\ell,t) = 0$ в силу краевых условий; индекс x у дифференциала в последних двух интегралах означает, что интегрирование осуществляется по переменной x.

Покажем справедливость равенства

$$\int_{0}^{T^{*}} \int_{0}^{\ell} p(x)u'_{x}(x,t) d_{x} \left(u'_{t}(x,t)\right) = \frac{1}{2} \int_{0}^{\ell} p(x) \left(u'_{x}(x,T^{*})\right)^{2} dx, \qquad (1.2.7)$$

если u(x,t) принадлежит E. В самом деле, имеем

$$\int_{0}^{T^{*}} \int_{0}^{\ell} p(x)u'_{x}(x,t) d_{x} \left(u'_{t}(x,t)\right) =$$
$$= \int_{0}^{T^{*}} \int_{0}^{\ell} p(x)u'_{x}(x,t) d_{x} \left(u'_{t}(x,t) - \int_{0}^{x} u''_{xt}(s,t) ds\right) +$$

$$+ \int_{0}^{T^*} \int_{0}^{\ell} p(x) u'_x(x,t) d_x \left(\int_{0}^{x} u''_{xt}(s,t) ds \right). \quad (1.2.8)$$

Покажем, что функция $u'_t(x,t) - \int\limits_0^x u''_{xt}(s,t) \, ds$ не зависит от x. Это бу-

дет означать, что первый интеграл в правой части последнего равенства равен нулю. Обозначим эту функцию через w(x,t):

$$w(x,t) = u'_t(x,t) - \int_0^x u''_{xt}(s,t) \, ds.$$

Проинтегрируем функцию w(x,t) по переменной t в пределах от 0 до некоторого $t_0 \leq T^*$:

$$\int_{0}^{t_0} w(x,\tau) \, d\tau = u(x,t_0) - u(x,0) - \int_{0}^{t_0} \int_{0}^{x} u''_{xt} \, ds \, d\tau,$$

или, после применения теоремы Фубини и несложных преобразований, будем иметь

$$\int_{0}^{t_0} w(x,\tau) \, d\tau = u(0,t_0) - u(0,0).$$

Из последнего равенства (в силу произвола t_0) следует равенство $w(x,t_0) = u'_t(0,t_0)$, которое и означает, что w(x,t) не зависит от x. Тогда, первый интеграл в правой части равенства (1.2.8) равен нулю. Для второго имеем

$$\int_{0}^{T^{*}} \int_{0}^{\ell} p(x)u'_{x}(x,t) d_{x} \left(\int_{0}^{x} u''_{xt}(s,t) ds \right) dt =$$
$$= \int_{0}^{T^{*}} \int_{0}^{\ell} p(x)u'_{x}(x,t)u''_{xt}(x,t) dx dt = \int_{0}^{T^{*}} \int_{0}^{\ell} p(x)\frac{1}{2}\frac{\partial}{\partial t} \left((u'_{x})^{2} \right) dx dt,$$

или, после применения теоремы Фубини,

$$\int_{0}^{T^{*}} \int_{0}^{\ell} p(x) \frac{1}{2} \frac{\partial}{\partial t} \left((u'_{x})^{2} \right) \, dx \, dt = \frac{1}{2} \int_{0}^{\ell} \left(\left(u'_{x}(x, T^{*})\right)^{2} - \left(u'_{x}(x, 0)\right)^{2} \right) \, dx = \frac{1}{2} \int_{0}^{\ell} \left(\left(u'_{x}(x, T^{*})\right)^{2} - \left(u'_{x}(x, 0)\right)^{2} \right) \, dx = \frac{1}{2} \int_{0}^{\ell} \left(\left(u'_{x}(x, T^{*})\right)^{2} - \left(u'_{x}(x, 0)\right)^{2} \right) \, dx = \frac{1}{2} \int_{0}^{\ell} \left(\left(u'_{x}(x, T^{*})\right)^{2} - \left(u'_{x}(x, 0)\right)^{2} \right) \, dx = \frac{1}{2} \int_{0}^{\ell} \left(\left(u'_{x}(x, T^{*})\right)^{2} - \left(u'_{x}(x, 0)\right)^{2} \right) \, dx = \frac{1}{2} \int_{0}^{\ell} \left(\left(u'_{x}(x, T^{*})\right)^{2} - \left(u'_{x}(x, 0)\right)^{2} \right) \, dx = \frac{1}{2} \int_{0}^{\ell} \left(\left(u'_{x}(x, T^{*})\right)^{2} - \left(u'_{x}(x, 0)\right)^{2} \right) \, dx = \frac{1}{2} \int_{0}^{\ell} \left(\left(u'_{x}(x, T^{*})\right)^{2} - \left(u'_{x}(x, 0)\right)^{2} \right) \, dx = \frac{1}{2} \int_{0}^{\ell} \left(\left(u'_{x}(x, T^{*})\right)^{2} - \left(u'_{x}(x, 0)\right)^{2} \right) \, dx = \frac{1}{2} \int_{0}^{\ell} \left(\left(u'_{x}(x, T^{*})\right)^{2} - \left(u'_{x}(x, 0)\right)^{2} \right) \, dx = \frac{1}{2} \int_{0}^{\ell} \left(\left(u'_{x}(x, T^{*})\right)^{2} + \left(u'_{x}(x, 0)\right)^{2} \right) \, dx = \frac{1}{2} \int_{0}^{\ell} \left(\left(u'_{x}(x, T^{*})\right)^{2} + \left(u'_{x}(x, 0)\right)^{2} \right) \, dx = \frac{1}{2} \int_{0}^{\ell} \left(\left(u'_{x}(x, T^{*})\right)^{2} + \left(u'_{x}(x, 0)\right)^{2} \right) \, dx = \frac{1}{2} \int_{0}^{\ell} \left(\left(u'_{x}(x, T^{*})\right)^{2} + \left(u'_{x}(x, 0)\right)^{2} \right) \, dx = \frac{1}{2} \int_{0}^{\ell} \left(\left(u'_{x}(x, T^{*})\right)^{2} + \left(u'_{x}(x, 0)\right)^{2} \right) \, dx = \frac{1}{2} \int_{0}^{\ell} \left(\left(u'_{x}(x, T^{*})\right)^{2} + \left(u'_{x}(x, 0)\right)^{2} \right) \, dx = \frac{1}{2} \int_{0}^{\ell} \left(\left(u'_{x}(x, T^{*})\right)^{2} + \left(u'_{x}(x, 0)\right)^{2} \right) \, dx = \frac{1}{2} \int_{0}^{\ell} \left(\left(u'_{x}(x, T^{*})\right)^{2} + \left(u'_{x}(x, 0)\right)^{2} \right) \, dx = \frac{1}{2} \int_{0}^{\ell} \left(\left(u'_{x}(x, T^{*})\right)^{2} + \left(u'_{x}(x, 0)\right)^{2} \right) \, dx = \frac{1}{2} \int_{0}^{\ell} \left(\left(u'_{x}(x, T^{*})\right)^{2} + \left(u'_{x}(x, 0)\right)^{2} \right) \, dx = \frac{1}{2} \int_{0}^{\ell} \left(\left(u'_{x}(x, 0)\right)^{2} + \left(u'_{x}(x, 0)\right)^{2} \right) \, dx = \frac{1}{2} \int_{0}^{\ell} \left(u'_{x}(x, 0)\right)^{2} \, dx = \frac{1}{2} \int_{0}^{\ell} \left(u'_{x}(x, 0)\right$$

$$= \frac{1}{2} \int_{0}^{\ell} \left(u'_{x}(x, T^{*}) \right)^{2} dx,$$

так как $u'_x(x,0) = 0$. Таким образом, равенство (1.2.7) доказано.

Интеграл (1.2.6), после применения теоремы Фубини, преобразуем следующим образом

$$\begin{split} \int_{0}^{T^{*}} \int_{0}^{\ell} \frac{\partial u}{\partial t} u Q'_{\sigma} \, d\sigma \, dt &= \int_{0}^{\ell} \int_{0}^{T^{*}} \frac{1}{2} \frac{\partial (u^{2})}{\partial t} \, dt \, dQ = \\ &= \frac{1}{2} \int_{0}^{\ell} \left(u^{2}(x, T^{*}) - u^{2}(x, 0) \right) \, dQ = \frac{1}{2} \int_{0}^{\ell} u^{2}(x, T^{*}) \, dQ, \end{split}$$

так как u(x, 0) = 0.

Окончательно, интеграл (1.2.3) равен

$$\int_{0}^{T^{*}} \int_{0}^{\ell} \frac{\partial u}{\partial t} \left(M_{\sigma}'(x) \frac{\partial^{2} u}{\partial t^{2}} - \frac{\partial}{\partial \sigma} \left(p(x) \frac{\partial u}{\partial x} \right) + u Q_{\sigma}' \right) d\sigma dt =$$

$$= \frac{1}{2} \int_{0}^{\ell} \left(\frac{\partial u}{\partial t}(x, T^{*}) \right)^{2} dM + \frac{1}{2} \int_{0}^{\ell} \left(\frac{\partial u}{\partial x}(x, T^{*}) \right)^{2} dx + \frac{1}{2} \int_{0}^{\ell} u^{2}(x, T^{*}) dQ.$$
(1.2.9)

В правой части последнего равенства, в силу условий, стоит сумма неотрицательных слагаемых, следовательно, каждое из них равно нулю. Из

равенства
$$\int_{0}^{t} p(x) \left(\frac{\partial u}{\partial t}(x,T^*)\right)^2 dx = 0$$
 следует, что $\left(\frac{\partial u}{\partial t}(x,T^*)\right)^2 = 0$

почти всюду (по x), а так как $u(x, T^*)$ абсолютно непрерывна, то $u(x, T^*)$ есть константа на $[0; \ell]$. Последнее, с учетом граничных условий $u(0, t) = u(\ell, t) = 0$, нам дает тождество $u(x, T^*) \equiv 0$ на $[0; \ell]$. Последнее противоречит нашему предположению. Теорема доказана.

Замечание 1.2.1. В процессе доказательства мы показали, что для функций u(x,t) из класса E смешанные производные u''_{xt} и u''_{tx} равны.

1.3 Корректность математической модели малых колебаний струны с произвольным распределением масс

В этом параграфе доказывается, что при определенных условиях на начальные данные и f(x,t) решение математической модели

$$\begin{cases} M'_{\sigma}(x)\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial \sigma} \left(p(x)\frac{\partial u}{\partial x} \right) - u\frac{dQ}{d\sigma} + f(x,t), \\ u(0,t) = u(\ell,t) = 0, \\ u(x,0) = \varphi_0(x), \\ u'_t(x,0) = \varphi_1(x), \end{cases}$$
(1.3.1)

существует в классе E.

Пусть G(x,s) - функция влияния граничной задачи

$$\begin{cases} -\frac{d}{d\sigma} \left(p(x) \frac{dv}{dx} \right) + v \frac{dQ}{d\sigma} = \frac{dF}{d\sigma}, \\ v(0) = v(\ell) = 0, \end{cases}$$

существование и единственность которой доказаны в работах [29], [45]. Тогда, разрешимость математической модели (1.3.1) эквивалентна разрешимости системы

$$\begin{cases} -\int_{0}^{\ell} G(x,s) \left[M'_{\sigma}(s) \frac{\partial^2 u}{\partial t^2}(s,t) - f(s,t) \right] d\sigma(s) = u(x,t), \\ u(x,0) = \varphi_0(x), \\ u'_t(x,0) = \varphi_1(x). \end{cases}$$
(1.3.2)

Проинтегрировав дважды по переменной t в пределах от 0 до t получим, что разрешимость (1.3.2) эквивалентна разрешимости в E уравнения Фредгольма первого рода

$$(Au)(x,t) = z(x,t),$$
 (1.3.3)

где

$$(Au)(x,t) = \int_{0}^{\ell} G(x,s)u(s,t) \, dM(s) + \int_{0}^{t} (t-\tau)u(x,\tau) \, d\tau \qquad (1.3.4)$$

И

$$z(x,t) = \int_{0}^{\ell} G(x,s) \left[\varphi_{0}(s) + t\varphi_{1}(s) + \int_{0}^{t} (t-\tau)f(s,\tau) d\tau \right] d\sigma(s). \quad (1.3.5)$$

Нетрудно видеть, что уравнение (1.3.3) имеет решение в E, если функция z(x,t) образу множества E, т. е. $z \in AE$.

Достаточно очевидно, что если выполнены следующие условия

1) $\varphi_i(0) = \varphi_i(\ell) = 0, \ i = 0, 1;$

2) функции
$$\varphi_i(x)$$
 $(i = 0, 1)$ и $\int_0^t f(x, \tau) d\tau$ абсолютно непрерывны по переменной x ; $\varphi'_{ix}(x)$ и $\int_0^t f'_x(x, \tau) d\tau - \sigma$ -абсолютно непрерывны на $[0; \ell];$

3) f(x,t) имеет непрерывные производные по t до второго порядка включительно,

то функция z(x, t), определяемая (1.3.5), принадлежит AE. Таким образом, при выполнении этих условий уравнение (1.3.3) разрешимо в E, т. е. математическая модель (1.3.1) имеет решение в классе E.

Покажем, что при малом изменении начальных условий $\varphi_0(x)$ и $\varphi_1(x)$ соответствующее решение математической модели

$$\begin{cases} M'_{\sigma}(x)\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial \sigma} \left(p(x)\frac{\partial u}{\partial x} \right) - u\frac{dQ}{d\sigma} + f(x,t), \\ u(0,t) = u(\ell,t) = 0, \\ u(x,0) = \varphi_0(x), \\ u'_t(x,0) = \varphi_1(x), \end{cases}$$
(1.3.6)

изменяется мало.

Приведем точную формулировку. Пусть p(x), $Q(x) - \sigma$ -абсолютно непрерывны на $[0; \ell]$; p(x) отделена от нуля; Q(x) не убывает на $[0; \ell]$.

Пусть $u_1(x,t)$ и $u_2(x,t)$ — решения модели (1.3.6) при начальных данных данных $\varphi_0^{(1)}(x), \varphi_1^{(1)}(x)$ и $\varphi_0^{(2)}(x), \varphi_1^{(2)}(x)$ соответственно, т. е. решения моделей

$$\begin{pmatrix}
M'_{\sigma}(x)\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial \sigma} \left(p(x)\frac{\partial u}{\partial x} \right) - u\frac{dQ}{d\sigma} + f(x,t), \\
u(0,t) = u(\ell,t) = 0, \\
u(x,0) = \varphi_0^{(i)}(x), \\
u'_t(x,0) = \varphi_1^{(i)}(x),
\end{cases}$$
(1.3.7)

(i = 1, 2). Обозначим через u(x, t) их разность: $u(x, t) = u_1(x, t) - u_2(x, t)$.

Если $\varphi_j(x) = \varphi_j^{(1)}(x) - \varphi_j^{(2)}(x)$ (j = 0, 1) и $\varphi_0'(x) = \varphi_0^{(1)'}(x) - \varphi_0^{(2)'}(x)$ малы (в смысле равномерной нормы) по абсолютной величине, то |u(x, t)|также мало изменяется на прямоугольнике $[0; \ell] \times [0; T]$.

Также как и при доказательстве единственности решения математической модели, для функции u(x,t) рассмотрим интеграл

$$\int_{0}^{T^*} \int_{0}^{\ell} \frac{\partial u}{\partial t} \left(M'_{\sigma}(x) \frac{\partial^2 u}{\partial t^2} - \frac{\partial}{\partial \sigma} \left(p(x) \frac{\partial u}{\partial x} \right) + u Q'_{\sigma} \right) \, d\sigma \, dt, \qquad (1.3.8)$$

который равен нулю. С другой стороны, разбивая интеграл (1.3.8) на три, интегрируя второй интеграл по частям, и применяя те же рассуждения, что и в § 1.2, будем иметь

$$\begin{split} \int_{0}^{T^*} \int_{0}^{\ell} \frac{\partial u}{\partial t} \left(\frac{\partial^2 u}{\partial t^2} M'_{\sigma}(x) - \frac{\partial}{\partial \sigma} \left(p(x) \frac{\partial u}{\partial x} \right) + u \frac{dQ}{d\sigma} \right) d\sigma \, dt = \\ &= \frac{1}{2} \int_{0}^{\ell} \left[\left(\frac{\partial u}{\partial t}(x, T^*) \right)^2 - \left(\frac{\partial u}{\partial t}(x, 0) \right)^2 \right] dM(x) - \\ &- \int_{0}^{T^*} \left[p(x) \frac{\partial u}{\partial x} \frac{\partial u}{\partial t} \right]_{x=0}^{x=\ell} - \int_{0}^{\ell} \frac{\partial u}{\partial x} dx \left(\frac{\partial u}{\partial t} \right) \right] dt + \\ &+ \frac{1}{2} \int_{0}^{\ell} \left(u^2(x, T^*) - u^2(x, 0) \right) dQ(x) = \\ &= \frac{1}{2} \int_{0}^{T^*} \left(\frac{\partial u}{\partial t}(x, T^*) \right)^2 dM(x) - \frac{1}{2} \int_{0}^{\ell} \varphi_1^2(x) dM(x) + \\ &+ \frac{1}{2} \int_{0}^{\ell} p(x) \left(\frac{\partial u}{\partial x}(x, T^*) \right)^2 dx - \frac{1}{2} \int_{0}^{\ell} p(x) \varphi_0^2(x) dx + \\ &+ \frac{1}{2} \int_{0}^{\ell} u^2(x, T^*) dQ(x) - \frac{1}{2} \int_{0}^{\ell} \varphi_0^2(x) dQ(x), \end{split}$$

так как $u(x,0) = \varphi_0(x), u'_x(x,0) = \varphi_{0'x}(x), u'_t(x,0) = \varphi_1(x)$ и $\frac{\partial u}{\partial x}(0,t) = \frac{\partial u}{\partial x}(\ell,t) = 0$ в силу граничных условий. Таким образом, приходим к ра-

венству

$$\frac{1}{2} \int_{0}^{\ell} \left(\frac{\partial u}{\partial t}(x,T^{*})\right)^{2} dM(x) + \frac{1}{2} \int_{0}^{\ell} p(x) \left(\frac{\partial u}{\partial x}(x,T^{*})\right)^{2} dx + \\ + \frac{1}{2} \int_{0}^{\ell} u^{2}(x,T^{*}) dQ(x) = \frac{1}{2} \int_{0}^{\ell} \varphi_{1}^{2}(x) dM(x) + \\ + \frac{1}{2} \int_{0}^{\ell} p(x) \varphi_{0}^{\prime 2}(x) dx + \frac{1}{2} \int_{0}^{\ell} \varphi_{0}^{2}(x) dQ(x), \quad (1.3.9)$$

из которого следует, что левая часть мала, так как по условию правая часть мала. Обозначая через ε правую часть равенства (1.3.9), найдем, что для всякого $T^* \in [0, T]$ и каждого $x \in [0; \ell]$ будем иметь

$$\int_{0}^{x} \left(\frac{\partial u}{\partial t}(s, T^{*})\right)^{2} dM(s) \leqslant \varepsilon \qquad (x \in \overline{[0; \ell]}_{S})$$
(1.3.10)

И

$$\int_{0}^{x} p(x) \left(\frac{\partial u}{\partial x}(s, T^{*})\right)^{2} ds \leqslant \varepsilon.$$

Покажем, что для всех $x \in [0; \ell]$ и $T^* \in [0; T]$ величина $|u(x, T^*)|$ мала, если малы ε и величина $\max_{x \in [0; \ell]} |\varphi_0(x)|$. Имеем

$$|u(x,T^*)| \le |u(x,T^*) - u(0,T^*)| + |u(0,T^*)|.$$
(1.3.11)

Оценим каждое слагаемое в правой части последнего неравенства. Для первого последовательно находим

$$|u(x,T^*) - u(0,T^*)| = \left| \int_0^x \frac{\partial u}{\partial x}(s,T^*) \, ds \right| \leq \int_0^x \left| \frac{\partial u}{\partial x}(s,T^*) \right| \, ds,$$

или, после применения неравенства Коши-Буняковского,

$$|u(x,T^*) - u(0,T^*)| \leqslant \left(\int_0^x 1^2 \, ds\right)^{1/2} \left(\int_0^x \left(\frac{\partial u}{\partial s}(s,T^*)\right)^2 \, ds\right)^{1/2} \leqslant$$

$$\leqslant \sqrt{\ell} \left(\int_{0}^{\ell} \left(\frac{\partial u}{\partial x}(s, T^*) \right)^2 \frac{ds}{p(s)} \right)^{1/2} \leqslant \sqrt{\frac{\ell}{c_0}} \sqrt{\varepsilon},$$

где $c_0 = \min_{x \in [0;\ell]_S} p(x) > 0$. Таким образом,

$$|u(x,T^*) - u(0,T^*)| \leqslant \sqrt{\frac{\ell}{c_0}}\sqrt{\varepsilon}.$$
(1.3.12)

Интеграл $\int_{0}^{\ell} |u(x,T^*) - u(0,T^*)| \, dM(x)$, в силу неравенства (1.3.12), допускает оценку

$$\int_{0}^{\ell} |u(x,T^*) - u(0,T^*)| \, dM(x) \leqslant \sqrt{\frac{\ell}{c_0}} \sqrt{\varepsilon} (M(\ell) - M(0)).$$

Отсюда, после несложных преобразований, найдем

$$|u(0,T^{*})|(M(\ell) - M(0)) \leq \leq \sqrt{\frac{\ell}{c_{0}}}\sqrt{\varepsilon}(M(\ell) - M(0)) + \int_{0}^{\ell} |u(x,T^{*})| \, dM(x) \leq \leq \sqrt{\frac{\ell}{c_{0}}}\sqrt{\varepsilon}(M(\ell) - M(0)) + \int_{0}^{\ell} |u(x,T^{*}) - u(x,0)| \, dM(x) + \int_{0}^{\ell} |\varphi_{0}(x)| \, dM(x). \quad (1.3.13)$$

Для интеграла $\int\limits_{0}^{\ell} \left| u(x,T^{*}) - u(x,0) \right| dM(x)$ получаем оценку

$$\int_{0}^{\ell} |u(x,T^{*}) - u(x,0)| \, dM(x) = \int_{0}^{\ell} \left| \int_{0}^{T^{*}} u_{t}'(x,t) \, dt \right| \, dM(x) \leq \\ \leq \int_{0}^{\ell} \int_{0}^{T^{*}} |u_{t}'(x,t)| \, dt \, dM(x),$$

или, после применения теоремы Фубини и неравенства Коши–Буняковского,

$$\begin{split} \int_{0}^{\ell} |u(x,T^{*}) - u(x,0)| \, dM(x) &\leqslant \int_{0}^{T^{*}} \int_{0}^{\ell} |u_{t}'(x,t)| \, dM(x) \, dt \leqslant \\ &\leqslant \int_{0}^{T^{*}} \left[\left(\int_{0}^{\ell} 1^{2} \, dM(x) \right)^{1/2} \cdot \left(\int_{0}^{\ell} |u_{t}'(x,t)|^{2} \, dM(x) \right)^{1/2} \right] \, dt \leqslant \\ &\leqslant \sqrt{M(\ell) - M(0)} \cdot \sqrt{\varepsilon} \cdot T^{*} \leqslant \sqrt{M(\ell) - M(0)} \cdot T \cdot \sqrt{\varepsilon}. \end{split}$$

Теперь, (1.3.13) принимает вид

$$\begin{aligned} |u(0,T^*)|(M(\ell)-M(0)) &\leqslant \sqrt{\frac{\ell}{c_0}}\sqrt{\varepsilon}(M(\ell)-M(0)) + \\ &+ \sqrt{M(\ell)-M(0)}T\sqrt{\varepsilon} + \max_{x \in [0;\ell]} |\varphi_0(x)|(M(\ell)-M(0)). \end{aligned}$$

Отсюда находим

$$|u(0,T^*)| \leq \sqrt{\frac{\ell}{c_0}}\sqrt{\varepsilon} + \frac{T}{\sqrt{M(\ell) - M(0)}}\sqrt{\varepsilon} + \max_{x \in [0;\ell]} |\varphi_0(x)|.$$
(1.3.14)

Таким образом, (1.3.11), с учетом (1.3.12) и (1.3.14), допускает перезапись

$$|u(x,T^*)| \leq 2\sqrt{\frac{\ell}{c_0}}\sqrt{\varepsilon} + \frac{T}{\sqrt{M(\ell) - M(0)}}\sqrt{\varepsilon} + \max_{x \in [0;\ell]} |\varphi_0(x)|.$$

Из последнего неравенства и следует требуемое. Другими словами, показана корректность математической модели малых вынужденных колебаний стилтьесовской струны.

Глава 2

О возможности применения метода Фурье

В этой главе исследуется вопрос о возможности представления решения математической модели

$$\begin{cases} M'_{\sigma}(x)\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial \sigma} \left(p(x)\frac{\partial u}{\partial x} \right) - u\frac{dQ}{d\sigma}, \\ u(0,t) = u(\ell,t) = 0, \\ u(x,0) = \varphi_0(x), \\ u'_t(x,0) = \varphi_1(x), \end{cases}$$
(2.0.1)

которая описывает малые свободные колебания стилтьесовской струны, в виде ряда Фурье по собственным функциям спектральной задачи

$$\begin{cases} -(pX'_{x})'_{\sigma} + Q'_{\sigma}X = \lambda XM'_{\sigma}, \\ X(0) = X(l) = 0, \end{cases}$$
(2.0.2)

где λ — спектральный параметр. Задача (2.0.2) возникает при разделении переменных в модели (2.0.1). Спектральная задача (2.0.2), записанная в интегро-дифференциальной форме, подробно изучена в работах [14], [32], [29]. Показано, что спектр задачи (2.0.2) является осциляционным, т. е. спектр Λ задачи (2.0.2) состоит из неограниченной последовательности вещественных, простых и положительных собственных значений, единственная точка сгущения которых $+\infty$. Если занумеровать их в порядке возрастания: $0 < \lambda_1 < \lambda_2 < \ldots < \lambda_n < \ldots$, а через $\varphi_1(x), \varphi_2(x), \ldots, \varphi_n(x), \ldots$, соответствующие им амплитудные функции, то $\{\varphi_i(x)\}_{i=1}^{\infty}$ обладают следующими свойствами:

- а) $\varphi_1(x)$ не имеет нулей внутри $(0; \ell);$
- б) $\varphi_k(x)$ (k = 2, 3, ...) имеет внутри $(0; \ell)$ ровно k 1 нулей;

в) нули $\varphi_k(x)$ и $\varphi_{k+1}(x)$ перемежаются.

Отметим, что амплитудные функции, отвечающие различным собственным частотам, ортогональны в смысле скалярного произведения

$$\langle \varphi, \psi \rangle = \int_{0}^{\ell} \varphi(x) \psi(x) M'_{\sigma}(x) \, d\sigma.$$

Будем считать, что амплитудные функции нормированы так, чтобы

$$\|\varphi_n\| = \sqrt{\int_0^\ell \varphi_n^2(x) M'_\sigma(x) \, d\sigma} = 1.$$

Для этого, очевидно, достаточно разделить амплитудную функцию на

число
$$\sqrt{\int_{0}^{c} \varphi_{n}^{2}(x) M_{\sigma}'(x) d\sigma}.$$

2.1 О разложении функций из E в ряд Фурье по собственным функциям

Покажем, что для всякой абсолютно непрерывной на $[0; \ell]$ функции f(x), производная которой имеет конечное на $[0; \ell]$ изменение и принимающей нулевые значения в концевых точках $[0; \ell]$, ряд Фурье по амплитудным функциям сходится равномерно и абсолютно на $[0; \ell]$. Заметим, что если это так, то коэффициенты ряда Фурье $\sum_{n=1}^{\infty} c_n \varphi_n(x)$, построенного для функции f(x), определяются по формулам

$$c_n = \int_0^\ell f(x)\varphi_n(x)M'_\sigma(x)\,d\sigma.$$
(2.1.1)

Сначала покажем, что ряд Фурье

$$\sum_{n=1}^{\infty} c_n \varphi_n(x), \qquad (2.1.2)$$

где c_n определяются по формулам (2.1.1), сходится к f(x) в среднем:

$$\lim_{N \to \infty} \int_{0}^{\ell} M'_{\sigma}(x) \left[f(x) - \sum_{k=1}^{N} c_k \varphi_k(x) \right]^2 d\sigma = 0$$

На множестве E абсолютно непрерывных на $[0; \ell]$ функций X(x), производная которых имеет конечную на $[0; \ell]$ вариацию и $X(0) = X(\ell) = 0$, рассмотрим функционал

$$\Phi(X) = \int_{0}^{\ell} p X_{x}^{\prime^{2}} dx + \int_{0}^{\ell} X^{2} Q_{\sigma}^{\prime} d\sigma$$

В работах [29], [14] доказывается, что производная функции $\varphi(x)$, которая дает минимум функционалу $\Phi(X)$, является σ -абсолютно непрерывной на $[0; \ell]$ функцией.

Функции

$$f_N(x) = f(x) - \sum_{k=1}^N c_k \varphi_k(x)$$

принадлежат E при всех N. Введем следующие обозначения

$$\Delta_N^2 = \int_0^\ell M'_\sigma(x) f_N^2(x) \, d\sigma, \quad \psi_N(x) = \frac{f_N(x)}{\Delta_N}.$$

Найдем $\Phi(\psi_N)$:

$$\begin{split} \Phi(\psi_N) &= \int_0^\ell p(x)\psi_N'^2(x)\,dx + \int_0^\ell \psi_N^2(x)Q_\sigma'(x)\,d\sigma = \\ &= \frac{1}{\Delta_N^2} \left[\int_0^\ell p(x) \left(f'(x) - \sum_{k=1}^N c_k\varphi_k'(x) \right)^2 \,dx + \\ &+ \int_0^\ell \left(f(x) - \sum_{k=1}^N c_k\varphi_k(x) \right)^2 Q_\sigma'(x)\,d\sigma \right] = \\ &= \frac{1}{\Delta_N^2} \left[\int_0^\ell p(x)f'^2(x)\,dx + \int_0^\ell f^2(x)Q_\sigma'(x)\,d\sigma - \\ &- 2\sum_{k=1}^N c_k \left(\int_0^\ell p(x)f'(x)\varphi_k'(x)\,dx + \int_0^\ell f(x)\varphi_k(x)Q_\sigma'(x)\,d\sigma \right) + \\ &+ \sum_{k=1}^N \sum_{m=1}^N c_k c_m \left(\int_0^\ell p(x)\varphi_k'(x)\varphi_m'(x)\,dx + \int_0^\ell \varphi_k(x)\varphi_m(x)Q_\sigma'(x)\,d\sigma \right) \right] = \\ &= \frac{1}{\Delta_N^2} \left[\Phi(f) - \sum_{k=1}^N \lambda_k c_k^2 \right], \quad (2.1.3) \end{split}$$

так как

$$\int_{0}^{\ell} p(x)f'(x)\varphi'_{k}(x) dx + \int_{0}^{\ell} f(x)\varphi_{k}(x)Q'_{\sigma}(x) d\sigma =$$

$$= p(x)\varphi'_{k}(x)f(x)\Big|_{x=0}^{x=\ell} + \int_{0}^{\ell} f(x)\left[-\left(p(x)\varphi'_{k}(x)\right)'_{\sigma} + \varphi_{k}(x)Q'_{\sigma}(x)\right] d\sigma =$$

$$= \int_{0}^{\ell} f(x)\lambda_{k}M'_{\sigma}(x)\varphi_{k}(x) d\sigma = \lambda_{k}c_{k},$$

ввиду того, что $f(0) = f(\ell) = 0$ (здесь мы первый интеграл проинтегрировали по частям, и затем воспользовались тем, что $\varphi_k(x)$ является амплитудной функцией, отвечающей собственной частоте $\sqrt{\lambda_k}$) и

$$\int_{0}^{\ell} p(x)\varphi_{k}'(x)\varphi_{m}'(x)\,dx + \int_{0}^{\ell} \varphi_{k}(x)\varphi_{m}(x)Q_{\sigma}'(x)\,d\sigma = \begin{cases} 0, & \text{если } k \neq m, \\ 1, & \text{если } k = m. \end{cases}$$

Покажем, что

$$\Phi(\psi_N) \geqslant \lambda_{N+1},\tag{2.1.4}$$

где $\lambda_{N+1} - (N+1)$ -ое собственное значение задачи (2.0.2). Доказательство разобьем на 4 этапа.

1. Рассмотрим задачу о нахождении минимума функционал
а $\Phi(X)$ при условии

$$\int_{0}^{\ell} M'_{\sigma}(x) X^{2}(x) \, d\sigma = 1 \tag{2.1.5}$$

на множестве E абсолютно непрерывных на $[0; \ell]$ функций, первая производная которых имеет конечное на $[0; \ell]$ изменение и обращающихся в нуль в концевых точках отрезка $[0; \ell]$. Как следует из результатов работ [32], [14] минимум достигается в классе допустимых функций. Тогда, осуществляющая его функция должна удовлетворять при некотором λ уравнению Лагранжа–Эйлера для функционала

$$\Phi_0(X) = \int_0^\ell p(x) X'^2(x) \, dx + \int_0^\ell X^2(x) Q'_\sigma(x) \, d\sigma - \lambda \int_0^\ell M'_\sigma(x) X^2(x) \, d\sigma,$$

которое совпадает с уравнением $-(pX')'_{\sigma} + XQ'_{\sigma} = \lambda M'_{\sigma}X$, более того, граничные условия также совпадают с граничными условиями в (2.0.2). Поэтому, функция $\varphi_1(x)$, дающая минимум $\Phi(X)$ при условии $\int_{0}^{\ell} M'_{\sigma}(x)X^2(x) d\sigma = 1$, является собственной функцией спектральной за-

дачи (2.0.2). Более того, значение функционала $\Phi(X)$ на этой функции равно λ :

$$\Phi(\varphi_1) = \int_{0}^{\ell} p(x) \varphi_1'^{2}(x) \, dx + \int_{0}^{\ell} \varphi_1^{2}(x) Q_{\sigma}'(x) \, d\sigma =$$

$$= p(x)\varphi_1'(x)\varphi_1(x)\Big|_0^\ell + \int_0^\ell \left[-\left(p(x)\varphi_1'(x)\right)_\sigma' + \varphi_1(x)Q_\sigma'(x)\varphi_1(x)\right]\varphi_1(x)\,d\sigma = \\ = \lambda \int_0^\ell M_\sigma'(x)\varphi_1'^2(x)\,d\sigma = \lambda,$$

и, очевидно, является наименьшим собственным значением. Обозначим его через λ_1 . Поэтому, значение функционала $\Phi(X)$ на E не меньше λ_1 : $\Phi(X) \ge \lambda_1$, причем знак равенства возможен только на $\varphi_1(x)$.

2. Докажем, что функция X(x), дающая минимум функционалу $\Phi(X)$ в классе E, удовлетворяющих условиям

$$\int_{0}^{\ell} M'_{\sigma}(x) X^{2}(x) \, d\sigma = 1, \qquad (2.1.6)$$

$$\int_{0}^{\ell} M'_{\sigma}(x)\varphi_{1}(x)X(x)\,d\sigma = 0,$$
(2.1.7)

является амплитудной функцией, отвечающей второй собственной частоте $\omega_2 = \sqrt{\lambda_2}$.

Функция X(x), дающая на E минимум $\Phi(X)$ при условиях (2.1.6) и (2.1.7), должна удовлетворять уравнению Лагранжа==Эйлера для функционала

$$\Phi_1(X) = \int_0^\ell p(x) X'^2(x) \, dx + \int_0^\ell X^2(x) Q'_\sigma(x) \, d\sigma -$$
$$-\lambda \int_0^\ell M'_\sigma(x) X^2(x) \, d\sigma - \mathfrak{E} \int_0^\ell M'_\sigma(x) \varphi_1(x) X(x) \, d\sigma$$

при некоторых λ и
 æ. Как нетрудно видеть, это уравнение принимает вид

$$-(pX')'_{\sigma} + XQ'_{\sigma} - \lambda M'_{\sigma}X - \frac{1}{2} a M'_{\sigma}(x)\varphi_1(x) = 0.$$
 (2.1.8)

Покажем, что $\mathfrak{a} = 0$. Для этого тождество

$$-\left(p\varphi_1'\right)_{\sigma}' + \varphi_1 Q_{\sigma}' - \lambda M_{\sigma}' \varphi_1 \equiv 0$$
умножим на X(x), а (2.1.8) — на $\varphi_1(x)$, вычтем почленно одно из другого, и результат проинтегрируем по мере σ по всему отрезку:

$$-\int_{0}^{\ell} (p(x)X'(x))'_{\sigma} \varphi_{1}(x) d\sigma - \lambda \int_{0}^{\ell} M'_{\sigma}(x)X(x)\varphi_{1}(x) d\sigma - \frac{2}{2}\int_{0}^{\ell} M'_{\sigma}(x)\varphi_{1}^{2}(x) d\sigma + \int_{0}^{\ell} (p(x)\varphi_{1}'(x))'_{\sigma}X(x) d\sigma + \lambda_{1}\int_{0}^{\ell} M'_{\sigma}(x)\varphi_{1}(x)X(x) d\sigma = 0,$$

или, с учетом условия (2.1.7),

$$-\int_{0}^{\ell} (p(x)X'(x))'_{\sigma} \varphi_{1}(x) \, d\sigma - \frac{x}{2} \int_{0}^{\ell} M'_{\sigma}(x) \varphi_{1}^{2}(x) \, d\sigma + \int_{0}^{\ell} (p(x)\varphi_{1}'(x))'_{\sigma} X(x) \, d\sigma = 0, \quad (2.1.9)$$

Первый и последний интегралы в левой части (2.1.9) проинтегрируем по частям и, в результате взаимной ликвидации интегралов, принадлежности X(x) и $\varphi_1(x)$ классу E, равенство (2.1.9) принимает вид

$$-\frac{x}{2}\int_{0}^{\ell}M_{\sigma}'(x)\varphi_{1}^{2}(x)\,d\sigma=0,$$

из которого и следует требуемое: æ = 0.

Таким образом, уравнение (2.1.8) принимает вид

$$-(pX')'_{\sigma} + XQ'_{\sigma} - \lambda M'_{\sigma}X = 0.$$

и X(x) является амплитудной. Обозначим ее через $\varphi_2(x)$.

Так как от увеличения числа условий на допустимые функции минимум $\Phi(X)$ может только увеличиться и $\Phi(\varphi_2) = \lambda_2$, то $\lambda_2 \ge \lambda_1$. Равенство $\lambda_2 = \lambda_1$ невозможно, ввиду того, что $\varphi_2(x)$ была бы коллинеарна $\varphi_1(x)$, что противоречит условию (2.1.7). Следовательно, $\lambda_2 > \lambda_1$.

Покажем, что между λ_1 и λ_2 нет других собственных значений. Предположим, что это не так: существует собственное значение λ^* , лежащее между λ_1 и λ_2 . Но тогда амплитудная функция $\varphi^*(x)$, отвечающая λ^* , как нетрудно видеть, доставляла бы минимум $\Phi(X)$ при условиях (2.1.6) и (2.1.7), т. е. была бы решением поставленной вариационной задачи, что невозможно.

3. Рассмотрим задачу минимизаци
и $\Phi(X)$ на E при следующих условиях

$$\int_{0}^{\ell} M'_{\sigma}(x) X^{2}(x) \, d\sigma = 1,$$

$$\int_{0}^{\ell} M'_{\sigma}(x) X(x) \varphi_{i}(x) \, d\sigma = 0 \quad (i = 1, 2, \dots, n-1), \quad (2.1.10)$$

где $\varphi_i(x) - i$ -ая амплитудная функция.

Функция, дающая на E минимум $\Phi(X)$ при условиях (2.1.6) и (2.1.10), удовлетворяет уравнению Лагранжа–Эйлера для функционала

$$\Phi_n(X) = \Phi(X) - \lambda \int_0^\ell M'_\sigma(x) X^2(x) \, d\sigma - \sum_{i=1}^{n-1} \mathfrak{X}_i \int_0^\ell M'_\sigma(x) X(x) \varphi_i(x) \, d\sigma,$$

которое в данном случае принимает вид

$$-(p(x)X'(x))'_{\sigma} + Q'_{\sigma}(x)X(x) - \lambda M'_{\sigma}(x)X(x) - \frac{1}{2}\sum_{i=1}^{n-1} \mathfrak{E}_{i}M'_{\sigma}(x)\varphi_{i}(x) = 0 \quad (2.1.11)$$

(вместе с граничными условиями). Покажем, что все \mathfrak{Z}_i равны нулю. Для этого (2.1.11) умножим на $\varphi_j(x)$ (j = 1, 2, ..., n - 1 — произвольно фиксированное число), тождество

$$-\left(p(x)\varphi_j(x)\right)'_{\sigma} + Q'_{\sigma}(x)\varphi_j(x) - \lambda_j M'_{\sigma}(x)\varphi_j(x) \equiv 0$$

на X(x), вычитая почленно одно из другого, и интегрируя по σ в пределах от 0 до ℓ :

$$-\int_{0}^{\ell} (p(x)X'(x))'_{\sigma} \varphi_{j}(x) d\sigma - \lambda \int_{0}^{\ell} M'_{\sigma}(x)X(x)\varphi_{j}(x) d\sigma - \sum_{i=1}^{n-1} a_{i} \int_{0}^{\ell} M'_{\sigma}(x)\varphi_{i}(x)\varphi_{j}(x) d\sigma + \int_{0}^{\ell} (p(x)\varphi'_{j}(x))'_{\sigma}X(x) d\sigma + \sum_{i=1}^{\ell} a_{i} \int_{0}^{\ell} M'_{\sigma}(x)\varphi_{i}(x)\varphi_{i}(x) d\sigma + \sum_{i=1}^{\ell} a_{i} \int_{0}^{\ell} M'_{\sigma}(x)\varphi_{i}(x)\varphi_{i}(x) d\sigma + \sum_{i=1}^{\ell} a_{i} \int_{0}^{\ell} A'_{\sigma}(x)\varphi_{i}(x) d\sigma + \sum_{i=1}^{\ell} a_{i} \int_{0}^{\ell} A'_{\sigma}(x)\varphi_{i}(x) d\sigma + \sum_{i=1}^{\ell} a_{i} \int_{0}^{\ell} A'_{\sigma}(x) d\phi + \sum_{i=1}^{\ell} a_{i} \int_{0}^{\ell$$

$$+ \lambda_j \int_0^\ell M'_\sigma(x)\varphi_j(x)X(x)\,d\sigma = 0.$$

Интегрируя интегралы

$$\int_{0}^{\ell} (p(x)X'(x))'_{\sigma}\varphi_{j}(x) d\sigma \quad \mathsf{M} \quad \int_{0}^{\ell} (p(x)\varphi'_{j}(x))'_{\sigma}X(x) d\sigma$$

по частям, используя равенство

$$\int_{0}^{\ell} M'_{\sigma}(x)\varphi_{i}(x)\varphi_{j}(x) \, d\sigma = \begin{cases} 0 & i \neq j, \\ 1 & i = j, \end{cases}$$

и условие (2.1.10) будем иметь

$$\frac{\mathfrak{x}_j}{2} \int_0^\ell M'_\sigma(x)\varphi_j^2(x)\,d\sigma = 0.$$

Из последнего равенства и следует, что $\mathfrak{w}_j = 0$ (для любого $j = 1, 2, \ldots, n-1$).

Таким образом, X(x) есть *n*-ая амплитудная функция, причем $\lambda_n > \lambda_{n-1}$ и между λ_{n-1} и λ_n нет собственных значений.

4. Теперь остается заметить, что для всякой другой допустимой функции, удовлетворяющей условиям (2.1.6) и (2.1.10), значение функционала $\Phi(X)$ не меньше λ_n .

Таким образом, неравенство (2.1.4) доказано. Из него вытекает

$$\Delta_N^2 \leqslant \frac{1}{\lambda_{N+1}} \left(\Phi(f) - \sum_{k=1}^N \lambda_k c_k^2 \right).$$
 (2.1.12)

Так как $\lambda_k > 0$ для всех k, то выражение $\Phi(f) - \sum_{k=1}^N \lambda_k c_k^2$ ограничено при

всех N. Из того, что $\lambda_{N+1} \to +\infty$ при $N \to \infty$ и следует $\Delta_N^2 \to 0$.

Таким образом, ряд Фурье по амплитудным функциям сходится к f(x) в среднем.

Теперь остается показать, что ряд

$$\sum_{k=1}^{\infty} c_k \varphi_k(x) \tag{2.1.13}$$

сходится равномерно и абсолютно, так как в этом случае сходится он может только к f(x). Применим критерий Коши для доказательства равномерной сходимости функционального ряда (2.1.13).

Для суммы $\sum_{k} |c_k \varphi_k(x)|$ при некоторых n и m последовательно нахо-

дим (применив при этом неравенство Коши)

$$\sum_{k=n}^{n+m} |c_k \varphi_k(x)| = \sum_{k=n}^{n+m} \left| c_k \sqrt{\lambda_k} \right| \cdot \left| \frac{\varphi_k(x)}{\sqrt{\lambda_k}} \right| \leq \left(\sum_{k=n}^{n+m} c_k^2 \lambda_k \right)^{1/2} \left(\sum_{k=n}^{n+m} \frac{\varphi_k^2(x)}{\lambda_k} \right)^{1/2}.$$
 (2.1.14)

Так как числовой ряд $\sum_{k=1}^{\infty} c_k^2 \lambda_k$ сходится и обозначая $K = \max_{x,k} |\varphi_k(x)|,$ последняя оценка принимает вид

$$\sum_{k=n}^{n+m} |c_k \varphi_k(x)| \leqslant \left(\sum_{k=1}^{\infty} c_k^2 \lambda_k\right)^{1/2} K \left(\sum_{k=n}^{n+m} \frac{1}{\lambda_k}\right)^{1/2} \leqslant K_1 \left(\sum_{k=n}^{n+m} \frac{1}{\lambda_k}\right)^{1/2},$$

где $K_1 = \sqrt{\Phi(f)} K.$

В [9, стр. 369] для случая $Q(x) \equiv \text{const}$ доказано равенство

$$\lim_{n \to \infty} \frac{n}{\sqrt{\lambda_n^*}} = \frac{1}{\pi} \int_0^\ell \sqrt{M_x'(x)} \, dx, \qquad (2.1.15)$$

где $M'_x(x)$ — производная Лебега и λ^*_n — собственное значение спектральной задачи

$$\begin{cases} -pu'_x(x) = -pu'_x(0) + \lambda \int_0^x u \, dM, \\ u(0) = u(\ell) = 0. \end{cases}$$

Из равенства (2.1.15) следует, что при некоторых постоянных C_1 и C_2 , независящих от *n*, справедливо неравенство

$$C_1 n^2 + C_2 \leqslant \lambda_n^*. \tag{2.1.16}$$

Из аналога теоремы Штурма [32] следует при всех *n* справедлива оценка

$$\lambda_n^* < \lambda_n$$

Тогда,

$$C_1 n^2 + C_2 < \lambda_n,$$

и ряд $\sum_{n=1}^\infty \frac{1}{\lambda_n}$ мажорируется сходящимся рядом. Следовательно, для любого $\varepsilon>0$ найдется N^* такое, что для всех $n\geqslant N^*$ и m справедливо неравенство

$$\sum_{k=n}^{n+m} \frac{1}{\lambda_k} < \frac{\varepsilon}{K_1},$$

которое и доказывает равномерную и абсолютную сходимость ряда (2.1.2).

2.2 О некоторых свойствах собственных функций

В этом параграфе устанавливается рост собственных функций при $k \to \infty$.

Лемма 2.2.1. Пусть $\varphi_k(x) - k$ -я амплитудная функция спектральной

задачи (2.0.2) и $\int_{0}^{\cdot} \varphi_{k}^{2}(x) M_{\sigma}'(x) d\sigma = 1$ для всех k. Тогда существует

постоянная $C^* > 0$ такая, что для всех $x \in [0; \ell]$ и натуральных k справедливо $|\varphi_k(x)| \leq C^*$.

Доказательство. Предположим противное: для всякого $C^* = n$ существуют x' и k такие, что $|\varphi_k(x')| > n$. Без ограничения общности можно считать $\varphi_k(x') > 0$.

Так как $\varphi_k(x)$ непрерывна на $[0; \ell]$ и $\varphi_k(0) = \varphi_k(\ell) = 0$, то существует интеграл ($\alpha'; \beta'$), содержащий точку x', и для всех $x \ \varphi_k(x) \ge n - 1$. Пусть $[\alpha; \beta]$ — максимальный отрезок, содержащий ($\alpha'; \beta'$), и такой, что $\varphi_k(x) \ge n - 1$ для всех x из этого отрезка.

Зафиксируем *n*, и рассмотрим множество

$$\omega_n = \{ x \in [\alpha; \beta] | n - 1 \leqslant \varphi_k(x) \leqslant n + 1 \}.$$
(2.2.1)

Из (2.2.1) следует, что

$$(n-1)^2 \int_{\omega_n} dM \leqslant \int_{\omega_n} \varphi_k^2(x) M'_{\sigma}(x) \, d\sigma \leqslant (n+1)^2 \int_{\omega_n} dM,$$

откуда немедленно находим, что M-мера множества не превосходит $\frac{1}{(n-1)^2}$.

В силу непрерывности $\varphi_k(x)$ в множестве ω_n существуют как минимум две точки x_1 и x_2 такие, что $\varphi_k(x_1) = n - 1$ и $\varphi_k(x_2) = n$. Далее, $|x_1 - x_2| < \frac{1}{(n-1)^2}$ и $|\varphi_k(x_1) - \varphi_k(x_2)| = 1$. Но последнее противоречит абсолютной непрерывности $\varphi_k(x)$.

Следстве 2.2.1. Пусть $\varphi_k(x)$ — амплитудная функция, нормированная $\left(\int_0^\ell \varphi_k^2 dM = 1\right)$ и отвечающая собственной частоте λ_k . Тогда найдется такая постоянная C_2^* , что для всех k и x справедлива оценка

$$|\varphi_k'(x)| \leqslant C_2^* \cdot \lambda_k. \tag{2.2.2}$$

Доказательство. Так как $\varphi_k(x)$ — амплитудная функция, то, как показано в работах [29], [32], справедливо тождество

$$\varphi_k(x) \equiv \lambda_k \int_0^\ell G(x,s)\varphi_k(s) \, dM(s), \qquad (2.2.3)$$

где G(x,s) — функция влияния граничной задачи

$$\begin{cases} -(pX'_x)'_{\sigma} + Q'_{\sigma} = F'_{\sigma}, \\ X(0) = X(\ell) = 0. \end{cases}$$

Из (2.2.3) и леммы 2.2.1 находим

$$\begin{aligned} |\varphi'_k(x)| &= \lambda_k \left| \int_0^\ell G'_x(x,s)\varphi_k(s) \, dM(s) \right| \leqslant \\ &\leqslant \sup_{x,s} |G'_x(x,s)| \cdot C_1^* \cdot \lambda_k(M(\ell) - M(0)), \end{aligned}$$

т. е. (2.2.2) справедливо при $C_2^* = \sup_{x,s} |G'_x(x,s)| \cdot C_1^* \cdot (M(\ell) - M(0)).$ \Box

В предыдущем параграфе было показано, что для всякой функции из E, обращающей в нуль на концах отрезка $[0; \ell]$, ее ряд сходится равномерно и абсолютно. Покажем, что для всякой непрерывной на $[0; \ell]$ функции f(x) ряд Фурье, построенной по этой функции, сходится к f(x)в среднем.

Для начала заметим, что для любого положительного ε найдется функция $\widehat{f}(x)$, принадлежащая E и обращающейся в нуль на концах $[0; \ell]$, такая, что

$$\int_{0}^{\varepsilon} M'_{\sigma}(x)(f(x) - \widehat{f}(x))^{2} d\sigma < \frac{\varepsilon}{6}$$

Пусть N выбрано настолько большим, что

$$\int_{0}^{\ell} M'_{\sigma}(x) \left[\widehat{f}(x) - \sum_{k=1}^{N} \widehat{c}_{k} \varphi_{k}(x) \right]^{2} d\sigma < \frac{\varepsilon}{6},$$

где \widehat{c}_k — коэффициенты ряда Фурье функции $\widehat{f}(x)$. Тогда

$$\int_{0}^{\ell} M'_{\sigma}(x) \left(f(x) - \sum_{k=1}^{N} \widehat{c}_{k} \varphi_{k}(x) \right)^{2} d\sigma \leqslant$$

$$\leq \int_{0}^{\ell} M_{\sigma}'(x) \left(\left| f(x) - \widehat{f}(x) \right| + \left| \widehat{f}(x) - \sum_{k=1}^{N} \widehat{c}_{k} \varphi_{k}(x) \right| \right)^{2} d\sigma =$$

$$= \int_{0}^{\ell} M_{\sigma}'(x) \left| f(x) - \widehat{f}(x) \right| \cdot \left| \widehat{f}(x) - \widehat{f}(x) \right|^{2} d\sigma +$$

$$+ 2 \int_{0}^{\ell} M_{\sigma}'(x) \left| f(x) - \widehat{f}(x) \right| \cdot \left| \widehat{f}(x) - \sum_{k=1}^{N} \widehat{c}_{k} \varphi_{k}(x) \right| d\sigma +$$

$$+ \int_{0}^{\ell} M_{\sigma}'(x) \left| \widehat{f}(x) - \sum_{k=1}^{N} \widehat{c}_{k} \varphi_{k}(x) \right|^{2} d\sigma < \frac{\varepsilon}{6} + 2\sqrt{\frac{\varepsilon}{6}} \cdot \sqrt{\frac{\varepsilon}{6}} + \frac{\varepsilon}{6} < \varepsilon.$$

(Здесь мы применили неравенство Коши.)

Таким образом, для всякой непрерывной на $[0; \ell]$ функции f(x) найдутся такое N и такие \hat{c}_k (k = 1, 2, ..., N), что интеграл

$$\int_{0}^{\ell} M'_{\sigma}(x) \left(f(x) - \sum_{k=1}^{N} \widehat{c}_{k} \varphi_{k}(x) \right)^{2} d\sigma \qquad (2.2.4)$$

сколь угодно мал. В то же время интеграл (2.2.4) принимает наименьшее значение, если вместо \hat{c}_k взять коэффициенты ряда Фурье, посчитанные для этой функции.

Так как $\varphi_k(x)$ ортогональны с весом $M'_{\sigma}(x)$, то для всех N справедливо

$$\int_{0}^{\ell} M'_{\sigma}(x) f^{2}(x) \, d\sigma \geqslant \sum_{k=1}^{N} c_{k}^{2},$$

из которого следует аналог неравенства Бесселя

$$\int_{0}^{\ell} M'_{\sigma}(x) f^{2}(x) \, d\sigma \geqslant \sum_{k=1}^{\infty} c_{k}^{2}. \tag{2.2.5}$$

2.3 Доказательство возможности применения метода Фурье

Для дальнейшего удобства введем следующее обозначение

$$LX = -\left(pX'\right)'_{\sigma} + XQ'_{\sigma}.$$

Покажем теперь, что справедлива следующая

Теорема 2.3.1. Пусть p(x), $Q(x) - \sigma$ -абсолютно непрерывны на $[0; \ell]$; p(x) отделена от нуля; Q(x) — не убывает на $[0; \ell]$. Пусть $\overline{\varphi}_0(x)$ и $\overline{\varphi}_1(x)$ абсолютно непрерывны на $[0; \ell]$, производные $\overline{\varphi}'_0(x)$ и $\overline{\varphi}'_1(x)$ имеют конечное на $[0; \ell]$ изменение; квазипроизводные $p(x)\overline{\varphi}'_0(x)$ и $p(x)\overline{\varphi}'_1(x) - \sigma$ абсолютно непрерывны на $[0; \ell]$; функции $\frac{L(\overline{\varphi}_0)(x)}{M'_{\sigma}(x)}$ и $\frac{L(\overline{\varphi}_1)(x)}{M'_{\sigma}(x)}$ непрерывны на $[0; \ell]$; $\frac{L(\overline{\varphi}_0)(x)}{M'_{\sigma}(x)}$ — абсолютно непрерывна и её производная имеет конечное изменение на $[0; \ell]$; $\overline{\varphi}_0(0) = \overline{\varphi}_0(\ell) = L(\overline{\varphi}_0)(0) = L(\overline{\varphi}_0)(\ell) =$ $\overline{\varphi}_1(0) = \overline{\varphi}_1(\ell) = 0$. Тогда, функция

$$u(x,t) = \sum_{k=1}^{\infty} \varphi_k(x) \left(A_k \cos \sqrt{\lambda_k} t + \frac{B_k}{\sqrt{\lambda_k}} \sin \sqrt{\lambda_k} t \right), \qquad (2.3.1)$$

где $\varphi_k(x)$ — нормированная амплитудная функция, отвечающая собственному значению λ_k ,

$$A_{k} = \int_{0}^{\ell} M'_{\sigma}(x)\varphi_{k}(x)\overline{\varphi}_{0}(x) \, d\sigma, \quad B_{k} = \int_{0}^{\ell} M'_{\sigma}(x)\varphi_{k}(x)\overline{\varphi}_{1}(x) \, d\sigma,$$

является решением математической модели

$$\begin{cases} M'_{\sigma}(x)\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial \sigma} \left(p(x)\frac{\partial u}{\partial x} \right) - u\frac{dQ}{d\sigma}, \\ u(0,t) = u(\ell,t) = 0, \\ u(x,0) = \varphi_0(x), \\ u'_t(x,0) = \varphi_1(x). \end{cases}$$

Причем ряд (2.3.1) можно дифференцировать почленно по t дважды и по x, σ также дважды; полученные таким образом ряды сходятся абсолютно и равномерно на прямоугольнике $[0; \ell] \times [0; T]$. *Доказательство.* Оценим коэффициенты ряда Фурье функции $\overline{\varphi}_0(x)$. Имеем

$$A_{k} = \int_{0}^{\ell} \overline{\varphi}_{0}(x) M_{\sigma}'(x) \varphi_{k}(x) d\sigma =$$

$$= \int_{0}^{\ell} \overline{\varphi}_{0}(x) \frac{1}{\lambda_{k}} \left(-(p(x)\varphi_{k}'(x))_{\sigma}' + Q_{\sigma}'(x)\varphi_{k}(x) \right) d\sigma =$$

$$= -\frac{1}{\lambda_{k}} \int_{0}^{\ell} \overline{\varphi}_{0}(x) (p(x)\varphi_{k}'(x))_{\sigma}' d\sigma + \frac{1}{\lambda_{k}} \int_{0}^{\ell} \overline{\varphi}_{0}(x)\varphi_{k}(x) Q_{\sigma}'(x) d\sigma.$$

Первый интеграл в правой части последнего равенства проинтегрируем дважды по частям, и воспользуемся свойствами функций $\varphi_k(x)$ и $\overline{\varphi}_0(x)$:

$$\begin{split} A_{k} &= -\frac{1}{\lambda_{k}} \left[\left. \overline{\varphi}_{0} p \varphi_{k}^{\prime} \right|_{0}^{\ell} - \varphi_{k} p \overline{\varphi}_{0}^{\prime} \right|_{0}^{\ell} + \int_{0}^{\ell} \varphi_{k}(x) \left(p \overline{\varphi}_{0}^{\prime} \right)_{\sigma}^{\prime} d\sigma \right] + \\ &+ \frac{1}{\lambda_{k}} \int_{0}^{\ell} \varphi_{k} Q_{\sigma}^{\prime}(x) d\sigma = \frac{1}{\lambda_{k}} \int_{0}^{\ell} \varphi_{k}(x) L \overline{\varphi}_{0}(x) d\sigma = \frac{1}{\lambda_{k}} \int_{0}^{\ell} \varphi_{k}(x) L \overline{\varphi}_{0}(x) d\sigma = \\ &= \frac{1}{\lambda_{k}} \int_{0}^{\ell} \varphi_{k}(x) M_{\sigma}^{\prime}(x) \frac{L \overline{\varphi}_{0}(x)}{M_{\sigma}^{\prime}(x)} d\sigma. \end{split}$$

Таким образом, $\lambda_k A_k$ — это коэффициенты ряда Фурье функции $\frac{L\overline{\varphi}_0(x)}{M'_{\sigma}(x)}$, которая, по условию, принадлежит *E* и принимает нулевые значения на концах отрезка $[0; \ell]$.

Тогда, ряд $\sum_{k=1}^{\infty} |\lambda_k A_k| \cdot |\varphi_k(x)|$ сходится равномерно и абсолютно. Из

неравенства (2.1.12) вытекает, что ряд $\sum_{k=1}^{\infty} \lambda_k^3 A_k^2$ сходится.

Оценим B_k :

$$B_k = \int_0^\ell \overline{\varphi}_1(x) M'_\sigma(x) \varphi_k(x) \, d\sigma =$$

$$=\frac{1}{\lambda_k}\int_0^\ell \overline{\varphi}_1(x)\left(-\left(p(x)\varphi_k'(x)\right)_\sigma'(x)+Q_\sigma'(x)\varphi_k(x)\right)\,d\sigma.$$

Разобьем интеграл в последнем равенстве на два, и первый интеграл проинтегрируем дважды по частям:

$$\begin{split} \int_{0}^{\ell} \overline{\varphi}_{1}(x) \left(p(x)\varphi_{k}'(x) \right)_{\sigma}' d\sigma &= \\ &= \overline{\varphi}_{1}(x)p(x)\varphi_{k}'(x) \Big|_{0}^{\ell} - \varphi_{k}(x)p(x)\overline{\varphi}_{1}'(x) \Big|_{0}^{\ell} + \int_{0}^{\ell} \varphi_{k}(x) \left(p(x)\overline{\varphi}_{1}'(x) \right)_{\sigma}' d\sigma = \\ &= \int_{0}^{\ell} \varphi_{k}(x) \left(p(x)\overline{\varphi}_{1}'(x) \right)_{\sigma}' d\sigma. \end{split}$$

Тогда

$$B_k = \frac{1}{\lambda_k} \int_0^\ell \varphi_k(x) M'_\sigma(x) \frac{L\overline{\varphi}_1(x)}{M'_\sigma(x)} d\sigma,$$

и $\lambda_k B_k$, как и ранее, являются коэффициентами ряда Фурье непрерывной на $[0; \ell]$ функции $\frac{L\overline{\varphi}_1(x)}{M'_{\sigma}(x)}$. Из аналога неравенства Бесселя (2.2.5) вытекает неравенство

$$\sum_{k=1}^{\infty} (\lambda_k B_k)^2 \leqslant \int_0^\ell M'_{\sigma}(x) \left(\frac{L\overline{\varphi}_1(x)}{M'_{\sigma}(x)}\right)^2 d\sigma,$$

из которого следует, что ряд $\sum_{k=1}^{\infty} \left(\lambda_k B_k\right)^2$ сходится.

Ряды, полученные формальным дифференцированием, имеют вид

$$\frac{\partial u}{\partial x} = \sum_{k=1}^{\infty} \varphi_k'(x) \left(A_k \cos \sqrt{\lambda_k} t + \frac{B_k}{\sqrt{\lambda_k}} \sin \sqrt{\lambda_k} t \right), \qquad (2.3.2)$$

$$\frac{\partial}{\partial\sigma} \left(p \frac{\partial u}{\partial x} \right) = \sum_{k=1}^{\infty} (p \varphi_k')_{\sigma}'(x) \left(A_k \cos \sqrt{\lambda_k} t + \frac{B_k}{\sqrt{\lambda_k}} \sin \sqrt{\lambda_k} t \right) =$$

$$=\sum_{k=1}^{\infty} \left(Q'_{\sigma}(x)\varphi_k(x) - \lambda_k M'_{\sigma}(x)\varphi_k(x)\right) \left(A_k \cos\sqrt{\lambda_k} t + \frac{B_k}{\sqrt{\lambda_k}} \sin\sqrt{\lambda_k} t\right),$$
(2.3.3)

$$\frac{\partial u}{\partial t} = \sum_{k=1}^{\infty} \varphi_k(x) \left(-A_k \sqrt{\lambda_k} \sin \sqrt{\lambda_k} t + B_k \cos \sqrt{\lambda_k} t \right), \qquad (2.3.4)$$

$$\frac{\partial^2 u}{\partial t \partial x} = \sum_{k=1}^{\infty} \varphi_k'(x) \left(-A_k \sqrt{\lambda_k} \sin \sqrt{\lambda_k} t + B_k \cos \sqrt{\lambda_k} t \right), \qquad (2.3.5)$$

$$\frac{\partial^2 u}{\partial t^2} = \sum_{k=1}^{\infty} \varphi_k(x) \left(-A_k \lambda_k \cos \sqrt{\lambda_k} t - B_k \sqrt{\lambda_k} \sin \sqrt{\lambda_k} t \right), \qquad (2.3.6)$$

каждый из которых оценивается числовым рядом

$$K\sum_{k=1}^{\infty} \left(\lambda_k |A_k| + \sqrt{\lambda_k} |B_k|\right),$$

где K — постоянная.

Покажем, что ряд

$$\sum_{k=1}^{\infty} \left(\lambda_k |A_k| + \sqrt{\lambda_k} |B_k| \right)$$
(2.3.7)

сходится. Из установленной ранее сходимости ряда $\sum_{k=1}^{\infty} \frac{1}{\lambda_k}$ следует, что для произвольного положительного ε найдется такое N, что для всякого натурального $n \ge N$ и любого m выполнено

$$\sum_{k=n}^{n+m} \frac{1}{\lambda_k} < \varepsilon.$$

Для этих *n* и *m* последовательно находим (применяя неравенство Коши)

$$\sum_{k=n}^{n+m} \left(\lambda_k |A_k| + \sqrt{\lambda_k} |B_k| \right) = \sum_{k=n}^{n+m} |A_k| \lambda_k^{3/2} \cdot \frac{1}{\sqrt{\lambda_k}} + \sum_{k=n}^{n+m} |B_k| \lambda_k \cdot \frac{1}{\sqrt{\lambda_k}} \leqslant \sqrt{\sum_{k=n}^{n+m} A_k^2 \lambda_k^3} \cdot \sqrt{\sum_{k=n}^{n+m} \frac{1}{\lambda_k}} + \sqrt{\sum_{k=n}^{n+m} B^2 \lambda_k^2} \cdot \sqrt{\sum_{k=n}^{n+m} \frac{1}{\lambda_k}} < \left(\sqrt{\widehat{A}} + \sqrt{\widehat{B}}\right) \sqrt{\varepsilon},$$

где через \widehat{A} и \widehat{B} обозначены соответственно суммы рядов $\sum_{k=1}^{\infty} \lambda_k^3 A_k^2$ и $\sum_{k=1}^{\infty} (\lambda_k B_k)^2$. Таким образом, ряд (2.3.7) сходится по признаку Коши. Теорема доказана.

Глава З

Математическая модель малых колебаний стержневой системы

В этой главе изучается математическая модель малых свободных колебаний системы, состоящей из шарнирно соединенных стрежней, помещенной во внешнюю среду с локализованными особенностями, которые приводят к потере гладкости у решения.

3.1 Модель малых поперечных колебаний стержня с особенностями

Поместим начало координат в один из концов стержневой системы. Пусть в точках $\{\xi_i\}_{i=0}^{i=n}$ стержни соединены шарнирно и присутствует две пружины, одна — реагирующая на изгиб стержней, находящихся слева и справа от точки ξ_i , а вторая — на отклонение. Изучаемая система в состоянии покоя расположена вдоль некоторой прямой, по которой направим ось абсцисс. Через u(x,t) обозначим отклонение от положения равновесия точки x в момент времени t. Будем рассматривать малые колебания, при которых каждая точка системы смещается перпендикулярно положению равновенсия, т. е. оси Ox. В точки ξ_i поместим массы m_i . Кинетическая энергия стержневой системы равна

$$T = \frac{1}{2} \int_{0}^{\ell} \rho \left(\frac{\partial u}{\partial t}\right)^{2} dx + \frac{1}{2} \sum_{i=1}^{n} m_{i} \left(\frac{\partial u}{\partial t}(\xi_{i}, t)\right)^{2},$$

где $\rho(x)$ — линейное плотное распределение массы (во всех точках, кроме ξ_i . Рассмотрим случай нерастяжимых стрержней. Потенциальная энергия упругого при постоянной кривизне пропорциональна квадрату кривизны. Следовательно, потенциальная энергия dU_0 элементарного участка dx, не содержащего ни одной точки ξ_i , равна

$$dU_0 = \frac{1}{2}p(x) \left\{ \frac{\frac{\partial^2 u}{\partial x^2}}{\left[1 + \left(\frac{\partial u}{\partial x}\right)^2\right]^{\frac{3}{2}}} \right\}^2,$$

где p(x) > 0 — характеризует материал из которого создан материал, а потенциальная энергия всех стержней системы равна

$$U_{0} = \sum_{i=0}^{n} \frac{1}{2} \int_{\xi_{i}+0}^{\xi_{i}-0} p(x) \left\{ \frac{\frac{\partial^{2}u}{\partial x^{2}}}{\left[1 + \left(\frac{\partial u}{\partial x}\right)^{2}\right]^{\frac{3}{2}}} \right\}^{2} dx, \qquad (3.1.1)$$

здесь для универсальности записи положено $\xi_0 + 0 = 0$ и $\xi_{n+1} - 0 = \ell$. Предположим, что отклонения системы от положения равновесия малы и членом $\left(\frac{\partial u}{\partial x}\right)^2$ в знаменателе можно пренебречь. Тогда (3.1.1) принимает вид

$$U_{0} = \sum_{i=0}^{n} \frac{1}{2} \int_{\xi_{i}+0}^{\xi_{i}-0} p(x) \left(\frac{\partial^{2} u}{\partial x^{2}}\right)^{2} dx.$$
(3.1.2)

Теперь к (3.1.2) добавляем потенциальную энергию пружин, реагирующих на изгиб, и пружин, реагирующих на смещение, получим потенциальную энергию всей системы

$$U = \sum_{i=0}^{n} \frac{1}{2} \int_{\xi_i+0}^{\xi_i-0} p(x) \left(\frac{\partial^2 u}{\partial x^2}\right)^2 dx + \sum_{j=1}^{n} \frac{1}{2} \gamma_j \left(\frac{\partial u}{\partial x}(\xi_i+0,t) - \frac{\partial u}{\partial x}(\xi_i-0,t)\right)^2 + \sum_{j=1}^{n} \frac{1}{2} \widehat{\gamma}_j \left(u(\xi_i,t)\right)^2,$$

где γ_j и $\widehat{\gamma}_j$ — жесткости пружин.

Отсюда находим, что интеграл Остроградского-Гамильтона имеет вид

$$\Phi(u) = \int_{t_0}^{t_1} (T - U) \, dt =$$

$$= \int_{t_0}^{t_1} \left[\frac{1}{2} \int_0^l \rho(x) \left(\frac{\partial u}{\partial t} \right)^2 dx + \frac{1}{2} \sum_{i=1}^n m_i \left(\frac{\partial u}{\partial t} (\xi_i, t) \right)^2 - \sum_{i=0}^n \frac{1}{2} \int_{\xi_i+0}^{\xi_i-0} p(x) \left(\frac{\partial^2 u}{\partial x^2} \right)^2 dx - \sum_{i=1}^n \frac{1}{2} \gamma_j \left(\frac{\partial u}{\partial x} (\xi_i + 0, t) - \frac{\partial u}{\partial x} (\xi_i - 0, t) \right)^2 - \sum_{j=1}^n \frac{1}{2} \widehat{\gamma_j} (u(\xi_i, t))^2 \right] dt. \quad (3.1.3)$$

Функционал (3.1.3) мы рассмотрим на следующем множестве функций: u(x;t) и частная производная $\frac{\partial u}{\partial x}(x,t)$ непрерывны на замкнутом прямоугольнике $[0;t] \times [t_0,t_1]; \frac{\partial u}{\partial x}(x,t)$ и $\frac{\partial^2 u}{\partial x^2}(x,t)$ равномерно непрерывны на каждом прямоугольнике $(\xi_t,\xi_{i+1}) \times [0;t]$ $(i = 0,1,\ldots,n);$ интегралы $\int_{t_0}^{t_1} \int_{0}^{t} p(x) \left(\frac{\partial u}{\partial t}\right)^2 dx dt$ и $\int_{t_0}^{t_1} \int_{\xi_{i+1}-0}^{\xi_{i+1}-0} p(x) \left(\frac{\partial^2 u}{\partial x^2}\right)^2 dx dt$ $(i = 0, 1, \ldots, n)$

конечны. Предположим, что функция u(x,t) имеет частные производные $\frac{\partial^2 u}{\partial t^2}$, $\frac{\partial}{\partial x}(p(x)\frac{\partial^2 u}{\partial x^2})$ и $\frac{\partial^2}{\partial x^2}(p(x)\frac{\partial^2 u}{\partial x^2})$, первая из которых непрерывна на $[0; \ell] \times [t_0, t_1]$, остальные — равномерно непрерывны на $(\xi_t, \xi_{i+1}) \times [t_0, t_1]$ $(i = 0, 1, \ldots, n).$

Применяя схему Лагранжа к функционалу $\Phi(u)$, будем иметь равенство нулю вариации:

$$\int_{t_0}^{t_1} \int_{0}^{\ell} \rho(x) \frac{\partial h}{\partial t} \frac{\partial u}{\partial t} dx dt + \sum_{i=1}^{n} m_i \int_{t_0}^{t_1} \frac{\partial u}{\partial t} (\xi_i, t) \frac{\partial h}{\partial t} (\xi_i, t) dt - \\ - \sum_{i=1}^{n} \int_{t_0}^{t_1} \int_{\xi_i+0}^{\xi_{i+1}-0} p(x) \frac{\partial^2 u}{\partial x^2} \frac{\partial^2 h}{\partial x^2} dx dt - \\ - \sum_{j=1}^{n} \int_{t_0}^{t_1} \gamma_j \left(\frac{\partial u}{\partial x} (\xi_{j+0}, t) - \frac{\partial u}{\partial x} (\xi_j, t) \right) \left(\frac{\partial h}{\partial x} (\xi_{j+0}, t) - \frac{\partial h}{\partial x} (\xi_{j-0}, t) \right) dt - \\ - \sum_{j=1}^{n} \int_{t_0}^{t_1} \widehat{\gamma_j} u(\xi_j, t) h(\xi_j, t) dt = 0 \quad (3.1.4)$$

для всякой h(x, t), равной нулю на границе прямоугольника $[0; l] \times [t_0, t_1]$ вместе с производной $\frac{\partial h}{\partial x}$.

Равенство (3.1.4) перепишем в следующем виде

$$\begin{split} \int_{t_0}^{t_1} \int_{0}^{t} \rho(x) \left[\frac{\partial}{\partial t} \left(\frac{\partial u}{\partial t} \cdot h \right) - h \cdot \frac{\partial^2 u}{\partial t^2} \right] dx dt + \\ &+ \sum_{i=1}^{n} m_i \left[\frac{\partial u}{\partial t} (\xi_i, t) \cdot h(\xi_i, t) \Big|_{t_0}^{t_1} - \int_{t_0}^{t_1} \frac{\partial^2 u}{\partial t^2} (\xi_i, t) \cdot h(\xi_i, t) dt \right] - \\ &- \sum_{i=0}^{n} \int_{t_0}^{t_1} \int_{\xi_i+0}^{\xi_{i+1}-0} \left[\frac{\partial}{\partial x} \left(p \cdot \frac{\partial^2 u}{\partial x^2} \cdot \frac{\partial h}{\partial x} \right) - \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \left(p \cdot \frac{\partial^2 u}{\partial x^2} \right) \cdot h \right) + \\ &+ \frac{\partial^2}{\partial x^2} \left(p \cdot \frac{\partial^2 u}{\partial x^2} \right) \cdot h \right] dx dt - \\ &- \sum_{j=1}^{n} \int_{t_0}^{t_1} \gamma_j \left(\frac{\partial u}{\partial x} (\xi_j + 0, t) - \frac{\partial u}{\partial x} (\xi_j - 0, t) \right) \times \\ &\times \left(\frac{\partial h}{\partial x} (\xi_j + 0, t) - \frac{\partial h}{\partial x} (\xi_j - 0, t) \right) dt - \\ &- \sum_{j=1}^{n} \int_{t_0}^{t_1} \widehat{\gamma}_j \cdot u(\xi_j, t) \cdot h(\xi_j, t) dt = 0. \end{split}$$

Применим к первому, второму и третьему двойным интегралам формулу Грина:

$$\iint_{D} \left(\frac{\partial Q}{\partial t} - \frac{\partial P}{\partial x} \right) dt \, dx = \int_{C} P \, dt + Q \, dx,$$

взяв в первом случае P = 0, $Q = \rho(x) \cdot \frac{\partial u}{\partial t} \cdot h$; во втором $-P = -p(x) \cdot \frac{\partial^2 u}{\partial x^2} \cdot \frac{\partial h}{\partial x}$, Q = 0 и в третьем $-P = -\frac{\partial}{\partial x} \left(p \cdot \frac{\partial^2 u}{\partial x^2} \right) \cdot h$, Q = 0:

$$\oint_{C} \rho(x) \cdot \frac{\partial u}{\partial t} \cdot h dx - \int_{t_0}^{t_1} \int_{0}^{l} \rho(x) \cdot \frac{\partial^2 u}{\partial t^2} \cdot h dx dt -$$

$$-\sum_{i=1}^{n} m_{i} \int_{t_{0}}^{t_{1}} \frac{\partial^{2} u}{\partial t^{2}} (\xi_{i}, t) \cdot h(\xi_{i}, t) dt -$$

$$-\sum_{i=0}^{n} \left[\oint_{C_{i}} \left(-p \cdot \frac{\partial^{2} u}{\partial x^{2}} \cdot \frac{\partial h}{\partial x} \right) dt - \oint_{C_{i}} \left(-\frac{\partial}{\partial x} \left(p \frac{\partial^{2} u}{\partial x^{2}} \right) \right) \cdot h dt +$$

$$+ \int_{t_{0}}^{t_{1}} \int_{\xi_{i}+0}^{\xi_{i+1}-0} \frac{\partial^{2}}{\partial x^{2}} \left(p \frac{\partial^{2} u}{\partial x^{2}} \right) \cdot h dx dt \right] -$$

$$-\sum_{j=1}^{n} \int_{t_{0}}^{t_{1}} \gamma_{j} \left(\frac{\partial u}{\partial x} (\xi_{j}+0,t) - \frac{\partial u}{\partial x} (\xi_{j}-0,t) \right) \times$$

$$\times \left(\frac{\partial h}{\partial x} (\xi_{j}+0,t) - \frac{\partial h}{\partial x} (\xi_{j}-0,t) \right) dt -$$

$$-\sum_{j=1}^{n} \int_{t_{0}}^{t_{1}} \widehat{\gamma}_{j} \cdot u(\xi_{j},t) \cdot h(\xi_{j},t) dt = 0, \quad (3.1.5)$$

где C – контур, ограничивающий прямоугольник $[0; \ell] \times [t_0; t_1]$, пробегаемый так, чтобы область (прямоугольник) осавалась слева; C_i – контур, ограничивающий прямоугольник $(\xi_i; \xi_{i+1}) \times [t_0; t_1]$, пробегаемый опять же так, чтобы область оставалась слева.

В равенстве (3.1.5) криволинейный интеграл по контуру C равен нулю, так как интегрирование производится по границе прямоугольника $[0; l] \times [t_0; t_1]$, на котором h(x, t) = 0. Выберем теперь h(x, t) так, чтобы пробная функция h(x, t) была равна нулю на всех прямоугольниках вместе с границей $(\xi_i; \xi_{i+1}) \times [t_0; t_1]$, кроме одного. Тогда из классической леммы Лагранжа следует, что на этом прямоугольнике

$$\rho(x)\frac{\partial^2 u}{\partial t^2} + \frac{\partial^2}{\partial x^2} \left(p(x)\frac{\partial^2 u}{\partial x^2} \right) \equiv 0.$$
(3.1.6)

Так как прямоугольник $(\xi_i; \xi_{i+1}) \times [t_0; t_1]$ произвольный, то (3.1.6) выполняется на каждом таком прямоугольнике, и (3.1.5) принимает вид:

$$-\sum_{i=1}^{n} m_{i} \int_{t_{0}}^{t_{1}} \frac{\partial^{2} u}{\partial t^{2}}(\xi_{i}, t) \cdot h(\xi_{i}, t) dt -$$

$$-\sum_{i=0}^{n} \left[\oint_{C_{i}} \left(-p \cdot \frac{\partial^{2}u}{\partial x^{2}} \cdot \frac{\partial h}{\partial x} \right) dt - \oint_{C_{i}} \left(-\frac{\partial}{\partial x} \left(p \frac{\partial^{2}u}{\partial x^{2}} \right) \right) \cdot h dt - \right. \\ \left. -\sum_{j=1}^{n} \int_{t_{0}}^{t_{1}} \gamma_{j} \left(\frac{\partial u}{\partial x} (\xi_{j} + 0, t) - \frac{\partial u}{\partial x} (\xi_{j} - 0, t) \right) \times \right. \\ \left. \times \left(\frac{\partial h}{\partial x} (\xi_{j} + 0, t) - \frac{\partial h}{\partial x} (\xi_{j} - 0, t) \right) dt - \right. \\ \left. -\sum_{j=1}^{n} \int_{t_{0}}^{t_{1}} \widehat{\gamma}_{j} \cdot u(\xi_{j}, t) \cdot h(\xi_{j}, t) dt = 0. \quad (3.1.7) \right]$$

Пусть теперь h(x,t) такая, что $\frac{\partial h}{\partial x}(\xi_j + 0, t) \neq 0$ при каком-то j, а при остальных $\frac{\partial h}{\partial x}(\xi_j + 0, t) = 0$ и $\frac{\partial h}{\partial x}(\xi_j - 0, t) = 0$ и $h(\xi_j, t) = 0$ (последние два соотношения выполняются при всех j). Тогда из (3.1.7) следует

$$p\frac{\partial^2 u}{\partial x^2}(\xi_i + 0, t) - \gamma_j \left(\frac{\partial u}{\partial x}(\xi_j + 0, t) - \frac{\partial u}{\partial x}(\xi_j - 0, t)\right) = 0.$$
(3.1.8)

В силу произвольности jделаем вывод о справедливости (3.1.8) для всехj.Аналогично получаем

$$p(\xi_j - 0)\frac{\partial^2 u}{\partial x^2}(\xi_i - 0, t) + \gamma_j \left(\frac{\partial u}{\partial x}(\xi_j + 0, t) - \frac{\partial u}{\partial x}(\xi_j - 0, t)\right) = 0. \quad (3.1.9)$$

Равенство (3.1.7), с учетом (3.1.8) и (3.1.9), можно переписать в виде

$$-\sum_{i=1}^{n} m_{i} \int_{t_{0}}^{t_{1}} \frac{\partial^{2} u}{\partial t^{2}}(\xi_{i}, t)h(\xi_{i}, t)dt - \sum_{i=0}^{n} \oint_{C_{i}} \frac{\partial}{\partial x} (p \frac{\partial^{2} u}{\partial x^{2}})hdt - \sum_{j=1}^{n} \int_{t_{0}}^{t_{1}} \widehat{\gamma}_{j} u(\xi_{j}, t)h(\xi_{j}, t)dt = 0.$$

Из последнего равенства находим, что

$$m_{i}\frac{\partial^{2}u}{\partial x^{2}}(\xi_{i},t) + \frac{\partial}{\partial x}\left(p(x)\frac{\partial^{2}u}{\partial x^{2}}\right)(\xi_{i}+0,t) - \frac{\partial}{\partial x}\left(p(x)\frac{\partial^{2}u}{\partial x^{2}}\right)(\xi_{i}-0,t) + \widehat{\gamma}_{j}u(\xi_{i},t) = 0 \quad (i=1,2,\ldots,n); \quad (3.1.10)$$

так как каждой отрезок прямой $x = x_i$ (i = 1, 2, ..., n), лежащий между точками (x_i, t_0) и (x_i, t_1) , пробегается дважды: один раз при обходе по контуру C_{i+1} (частная производная $\frac{\partial}{\partial x} \left(p(x) \frac{\partial^2}{\partial x^2} \right)$) берется со знаком «-»), а второй — по контуру C_i (производная берется со знаком «+»). Таким образом, u(x, t) удовлетворяет уравнению (3.1.6) для $(x, t) \in \bigcup_{i=0}^{n} (\xi_i + 0, \xi_i - 0) \times [t_0, t_1])$; условию непрерывности: u(x, t) непрерывна на всем $[0; l] \times [t_0; t_1]$; условиям (3.1.8), (3.1.9) и (3.1.10).

Воспользуясь теперь производными по мере при дифференцировании по x, мы можем задачу записать в следующем виде

$$\frac{\partial}{\partial \sigma(x)} \left(\frac{\partial}{\partial x} \left(\hat{p}(x) \frac{\partial}{\partial \mu(x)} \frac{\partial u}{\partial x} \right) \right) + \frac{\partial Q}{\partial \sigma(x)} u + \hat{m}(x) \frac{\partial^2 u}{\partial t^2} = 0, \quad (3.1.11)$$

где $\mu(x) = x + \sum_{i=1}^n \gamma_i \theta(x - \xi_i), \; \theta(x) - ф$ ункция Хевисайда, $\sigma(x) = x + \sum_{i=1}^n \theta(x - \xi_i);$
$$Q(x) = \sum_{i:\xi < x} \hat{\gamma}_i \theta(x - \xi_i);$$
$$\hat{p}(x) = \begin{cases} p(x) & \text{при } x \neq \xi_i, \\ \gamma_i & \text{при } x = \xi_i, \\ \text{при } x = \xi_i, \end{cases}$$

Таким образом, свободные колебания рассматриваемой системы описываются уравнением (3.1.11), которое мы дополним какими-либо краевыми условиями, например, условиями защемления концов

$$u(0) = u''_{xx}(0) = u(\ell) = u''_{xx}(\ell) = 0.$$
(3.1.12)

3.2 Единственность решения математической модели малых вынужденных колебаний стержневой системы

В этом параграфе доказывается, что математическая модель

$$\begin{cases} M'_{\sigma}(x)\frac{\partial^2 u}{\partial t^2} = -\frac{\partial}{\partial\sigma}\frac{\partial}{\partial x}\left(p(x)\frac{\partial}{\partial\mu}\frac{\partial u}{\partial x}\right) + \frac{\partial}{\partial\sigma}\left(r(x)\frac{\partial u}{\partial x}\right) - \frac{dQ}{d\sigma}u + f(x,t),\\ u(0,t) = u''_{x\mu}(0,t) = u''_{x\mu}(\ell,t) = u(\ell,t) = 0,\\ u(x,0) = \varphi_0(x),\\ \frac{\partial u}{\partial t}(x,0) = \varphi_1(x), \end{cases}$$
(3.2.1)

возникающая при моделировании малых вынужденных поперечных колебаний системы, состоящей из растянутых стержней, которые соединены шарнирно; в каждой точке шарнирного соединения имеется пружина, реагирующая исключительно на поворот; система находится во внешней среде, локальный коэффициент упругости которой равен dQ; коэффициент p(x) характеризует материал из которого сделан стержень и отвечает за изгибную жесткость; $r(x) \ge 0$ — сила натяжения стержневой системы в точке x; функция $\mu(x)$ имеет особенности (ввиде скачков) в точках шарнирного соединения; f(x,t) — сосредоточенная сила (если таковая присутствует), приложенная в точке шарнира в момент времени t, или плотность силы во всех остальных точках; мера σ , порождаемая строго возрастающей функцией $\sigma(x)$, содержит в себе все особенности модели — это и точки шарнирного соединения, и точки в которых локализованы особенности внешней среды, и присутствуют сосредоточенные массы; M(x) — распределение масс на системе, причем скачки M(x) соответствуют случаю сосредоточенных масс. На концах система закреплена шарнирно.

Через $S(\sigma)$ — обозначим точки разрыва функции $\sigma(x)$; σ -мера каждой точки $\xi \in S(\sigma)$ равна $\sigma\{\xi\} = \sigma(\xi + 0) - \sigma(\xi - 0)$. В точках, принадлежащих $S(\sigma)$, уравнение в (3.2.1) принимает вид

$$\Delta M(\xi) \frac{\partial^2 u}{\partial t^2}(\xi, t) = = -\Delta \left(\left(p(x) u_{x\mu}'' \right)_x' \right) (\xi, t) + \Delta \left(r u_x' \right) (\xi, t) - u(\xi, t) \Delta Q(\xi) + f(\xi, t),$$
(3.2.2)

где $f(\xi, t)$ характеризует сосредоточенную силу, приложенную в точке ξ

в момент времени t. Помимо (3.2.2) в точке ξ «присутствуют» еще три условия:

$$u(\xi - 0, t) = u(\xi + 0, t),$$

$$p(\xi)\frac{\Delta u'_x(\xi,t)}{\Delta \mu(\xi)} = p(\xi-0)u''_{x\mu}(\xi-0,t) = p(\xi+0)u''_{x\mu}(\xi+0,t).$$

Далее мы будем предполагать, что $S(\sigma) = S(\mu)$, т. е. дополнительных особенностей, порождаемые внешней средой и силой, не возникает.

Решение математической модели (3.2.1) мы ищем в классе E функций u(x,t), каждая из которых непрерывна на $[0;\ell] \times [0;T]$; имеет непрерывные по переменной t до второго порядка включительно при фиксированном x; при постоянном t u(x,t) абсолютно непрерывна по x на $[0;\ell]$; $u'_x(x,t) - \mu$ -абсолютно непрерывна на $[0;\ell]$; $p(x)u''_{x\mu}(x,t) -$ абсолютно непрерывна на $[0;\ell]$; $p(x)u''_{x\mu}(x,t) -$ абсолютно непрерывна на $[0;\ell]$; производные $u''_{tx\mu}(x,t)$ и $u''_{x\mu t}(x,t)$ равны почти всюду (в смысле меры $[\mu \times t]$ заданной на прямоугольнике $[0;\ell] \times [0;T]$); производные $u''_{tx}(x,t)$ и $u''_{xt}(x,t)$ равны почти всюду в смысле меры Лебега заданной на $[0;\ell] \times [0;T]$.

Теорема 3.2.1. Пусть p(x), r(x) и $Q(x) - \sigma$ -абсолютно непрерывны на $[0; \ell]$; p(x) > 0, $r(x) \ge 0$ и $Q'_{\sigma}(x) \ge 0$, f(x, t) непрерывна по совокупности переменных. Математическая модель (3.2.1) не может иметь двух различных решений в классе E.

Предположим, что существуют два различных на $[0; \ell] \times [0; T]$ решения $u_1(x, t)$ и $u_2(x, t)$ математической модели (3.2.1). Пусть (x^*, T^*) — точка в которой решения $u_1(x, t)$ и $u_2(x, t)$ различны. Разность $u(x, t) = u_1(x, t) - u_2(x, t)$ является решением модели

$$\begin{cases} M'_{\sigma}(x)\frac{\partial^2 u}{\partial t^2} = -\frac{\partial}{\partial \sigma}\frac{\partial}{\partial x}\left(p(x)\frac{\partial}{\partial \mu}\frac{\partial u}{\partial x}\right) + \frac{\partial}{\partial \sigma}\left(r(x)\frac{\partial u}{\partial x}\right) - \frac{dQ}{d\sigma}u,\\ u(0,t) = u''_{x\mu}(0,t) = u''_{x\mu}(\ell,t) = u(\ell,t) = 0,\\ u(x,0) = 0,\\ \frac{\partial u}{\partial t}(x,0) = 0. \end{cases}$$

Тождество

$$M'_{\sigma}(x)\frac{\partial^2 u}{\partial t^2} + \frac{\partial}{\partial \sigma}\frac{\partial}{\partial x}\left(p(x)\frac{\partial}{\partial \mu}\frac{\partial u}{\partial x}\right) - \frac{\partial}{\partial \sigma}\left(r(x)\frac{\partial u}{\partial x}\right) + \frac{dQ}{d\sigma}u \equiv 0$$

умножим на $\frac{\partial u}{\partial t}$, проинтегрируем по прямоугольнику $[0; \ell] \times [0; T^*]$ по мере $[\sigma \times t]$ и разобьем полученный интеграл на четыре:

$$\int_{0}^{\ell} \int_{0}^{T^{*}} M_{\sigma}'(x) u_{tt}'' u_{t}' dt d\sigma + \int_{0}^{\ell} \int_{0}^{T^{*}} u_{t}' \left(p u_{x\mu}'' \right)_{x\sigma}'' dt d\sigma - \\ - \int_{0}^{\ell} \int_{0}^{T^{*}} u_{t}' \left(r u_{x}' \right)_{\sigma}' dt d\sigma + \int_{0}^{\ell} \int_{0}^{T^{*}} u_{t}' u Q_{\sigma}' dt d\sigma = 0. \quad (3.2.3)$$

Первый интеграл в левой части равенства (3.2.3)

$$\int_{0}^{\ell} \int_{0}^{T^{*}} M'_{\sigma}(x) u''_{tt} u'_{t} dt d\sigma = \frac{1}{2} \int_{0}^{\ell} M'_{\sigma}(x) \left(u'_{t}(x, T^{*}) \right)^{2} d\sigma,$$

так как $u'_t(x,0) = 0$. Во втором интеграле поменяем порядок интегрирования (что возможно в силу теоремы Фубини), и внутренний интеграл дважды проинтегрируем по частям

$$\int_{0}^{\ell} \int_{0}^{T^{*}} u'_{t} \left(pu''_{x\mu} \right)''_{x\sigma} dt \, d\sigma = \int_{0}^{T^{*}} \left(\int_{0}^{\ell} u'_{t} \left(pu''_{x\mu} \right)''_{x\sigma} d\sigma \right) dt =$$

$$= \int_{0}^{T^{*}} \left(u'_{t} \left(pu''_{x\mu} \right)'_{x} \Big|_{x=0}^{x=\ell} - \int_{0}^{\ell} \left(pu''_{x\mu} \right)'_{x} d_{x} (u'_{t}) \right) dt =$$

$$= - \int_{0}^{T^{*}} \int_{0}^{\ell} \left(pu''_{x\mu} u''_{tx} \Big|_{x=0}^{x=\ell} - \int_{0}^{\ell} pu''_{x\mu} d_{x} (u''_{tx}) \right) dt = \int_{0}^{T^{*}} \int_{0}^{\ell} pu''_{x\mu} u'''_{tx\mu} d\mu dt =$$

$$= \int_{0}^{T^{*}} \int_{0}^{\ell} pu''_{x\mu} u''_{tx} d\mu dt =$$

$$= \int_{0}^{T^{*}} \int_{0}^{\ell} pu''_{x\mu} u''_{tx} d\mu dt \quad (3.2.4)$$

(здесь мы воспользовались равенствами $\left(pu''_{x\mu}\right)'_x(0,t) = \left(pu''_{x\mu}\right)'_x(\ell,t) = 0$ и свойствами функции, принадлежащей E). Применим к интегралу в

правой части (3.2.4) теорему Фубини, получим

$$\int_{0}^{T^{*}} \int_{0}^{\ell} p u_{x\mu}'' u_{x\mu t}''' d\mu dt = \int_{0}^{\ell} \int_{0}^{T^{*}} p u_{x\mu}'' u_{x\mu t}''' dt d\mu = \frac{1}{2} \int_{0}^{\ell} p(x) \left(u_{x\mu}''(x, T^{*}) \right)^{2} d\mu,$$

так как $u''_{x\mu}(x,0) = 0.$

Аналогично преобразуем третий интеграл в (3.2.3)

$$\int_{0}^{\ell} \int_{0}^{T^{*}} u_{t}' (ru_{x}')_{\sigma}' dt d\sigma = \int_{0}^{T^{*}} \int_{0}^{\ell} u_{t}' (ru_{x}')_{\sigma}' d\sigma dt =$$

$$= \int_{0}^{T^{*}} \left(u_{t}' ru_{x}' \Big|_{x=0}^{x=\ell} - \int_{0}^{\ell} ru_{x}' d_{x}(u_{t}') \right) dt = - \int_{0}^{T^{*}} \int_{0}^{\ell} r(x) u_{x}' u_{tx}'' dx dt =$$

$$= -\frac{1}{2} \int_{0}^{\ell} r(x) \left(u_{x}'(x, T^{*}) \right)^{2} dx,$$

так как почти всюду $u''_{xt} = u''_{tx}$ и $u'_x(x,0) = 0$. Наконец, четвертый интеграл —

$$\int_{0}^{\ell} \int_{0}^{T^*} u_t' u Q_{\sigma}' \, dt \, d\sigma = \frac{1}{2} \int_{0}^{\ell} u^2(x, T^*) Q_{\sigma}'(x) \, d\sigma.$$

Окончательно, (3.2.3) принимает вид

$$\frac{1}{2} \int_{0}^{\ell} M'_{\sigma}(x) \left(u'_{t}(x,T^{*})\right)^{2} d\sigma + \frac{1}{2} \int_{0}^{\ell} p(x) \left(u''_{x\mu}(x,T^{*})\right)^{2} d\mu + \frac{1}{2} \int_{0}^{\ell} r(x) \left(u'_{x}(x,T^{*})\right)^{2} dx + \frac{1}{2} \int_{0}^{\ell} u^{2}(x,T^{*})Q'_{\sigma}(x) d\sigma = 0.$$

Но в правой части последнего равенства, в силу условий, стоит сумма неотрицательных слагаемых, следовательно, каждое из них равно нулю. Из равенства $\int_{0}^{\ell} p(x) \left(u''_{x\mu}(x,T^*) \right)^2 d\mu = 0$ вытекает, что $p(x) \left(u''_{x\mu}(x,T^*) \right)^2 = 0$ почти всюду (в смысле меры μ). Тогда, $u''_{x\mu}(x,T^*) = 0$ почти всюду, следовательно, в силу μ -абсолютной непрерывности $u'_x(x,T^*)$ на $[0;\ell]$ и абсолютной непрерывности $u(x,T^*)$ на $[0;\ell]$,

при некоторых постоянных C_1 и C_2 , $u(x, T^*) = C_1 + C_2 x$, что, с учетом граничных условий $u(0,t) = u(\ell,t) = 0$, нам дает тождество $u(x,T^*) \equiv 0$. Полученное противоречие доказывает единственность решения математической модели (3.2.1).

Замечание 3.2.1. Выше мы показали единственность решения математической модели (3.2.1) с шарнирно закрепленными концами. Такой же результат можно гарантировать и в случае защемленных концов (граничные условия: $u(0,t) = u'_x(0,t) = u(\ell,t) = u'_x(\ell,t) = 0$).

3.3 Корректность математической модели малых вынужденных колебаний стержневой системы

В этом параграфе доказывается, что при малом изменении начальных условий, решение математической модели

$$\begin{cases} M'_{\sigma}(x)\frac{\partial^2 u}{\partial t^2} = -\frac{\partial}{\partial\sigma}\frac{\partial}{\partial x}\left(p(x)\frac{\partial}{\partial\mu}\frac{\partial u}{\partial x}\right) + \frac{\partial}{\partial\sigma}\left(r(x)\frac{\partial u}{\partial x}\right) - \frac{dQ}{d\sigma}u + f(x,t),\\ u(0,t) = u''_{x\mu}(0,t) = u''_{x\mu}(\ell,t) = u(\ell,t) = 0,\\ u(x,0) = \varphi_0(x),\\ \frac{\partial u}{\partial t}(x,0) = \varphi_1(x), \end{cases}$$
(3.3.1)

мало изменится. Пусть $u_1(x,t)$ и $u_2(x,t)$ — решения математической модели (3.3.1) при начальных условиях $u(x,0) = \varphi_0^{(1)}(x)$, $u'_t(x,0) = \varphi_1^{(1)}(x)$ и $u(x,0) = \varphi_0^{(2)}(x)$, $u'_t(x,0) = \varphi_1^{(2)}(x)$ соответственно. Тогда, разность $u(x,t) = u_1(x,t) - u_2(x,t)$ является решением (3.3.1) при $f(x,t) \equiv 0$, $u(x,0) = \varphi_0(x)$ и $u'_t(x,0) = \varphi_1(x)$, где $\varphi_i(x) = \varphi_i^{(1)}(x) - \varphi_i^{(2)}(x)$ (i = 1, 2).

Так же, как и в § 3.2 доказывается равенство (для произвольного фиксированного $T^* \in [0; T]$)

$$\frac{1}{2} \int_{0}^{\ell} (u'_{t}(x,T^{*}))^{2} dM + \frac{1}{2} \int_{0}^{\ell} p(x) \left(u''_{x\mu}(x,T^{*}) \right)^{2} d\mu + \frac{1}{2} \int_{0}^{\ell} r(x) \left(u'_{x}(x,T^{*}) \right)^{2} dx + \frac{1}{2} \int_{0}^{\ell} u^{2}(x,T^{*}) dQ = \frac{1}{2} \int_{0}^{\ell} (\varphi_{1}(x))^{2} dM + \frac{1}{2} \int_{0}^{\ell} p(x) \left(\varphi_{0''_{x\mu}}(x) \right)^{2} d\mu + \frac{1}{2} \int_{0}^{\ell} r(x) \left(\varphi_{0''_{x}}(x) \right)^{2} dx + \frac{1}{2} \int_{0}^{\ell} (\varphi_{0}(x))^{2} dQ. \quad (3.3.2)$$

Из последнего равенства находим, что левая часть мала, так как по условию правая часть мала. Обозначим через ε^2 правую часть (3.3.2). Для всякого $x \in [0; \ell] \setminus \{S(M) \cup S(\mu)\}$ и $T^* \in [0; T]$ будем иметь

$$\int_{0}^{x} \left(\frac{\partial u}{\partial t}(s,T^{*})\right)^{2} dM(s) \leqslant \varepsilon^{2}, \quad \int_{0}^{x} p(s) \left(u_{x\mu}''(s,T^{*})\right)^{2} d\mu \leqslant \varepsilon^{2}$$

$$\int_{0}^{x} r(x) \left(u'_{x}(x, T^{*}) \right)^{2} dx \leqslant \varepsilon^{2}.$$

Покажем, что для всех $x \in [0; \ell]$ и $T^* \in [0; T]$ величина $|u(x, T^*)|$ мала, если ε мало. Имеем (так как $u(0, T^*) = 0$)

$$\begin{aligned} |u(x,T^*)| &= \left| \int_0^x u'_x(s,T^*) \, ds \right| = \\ &= \left| \int_0^x \left(u'_x(0,T^*) + \int_0^s u''_{x\mu}(\eta,T^*) \, d\mu(\eta) \right) \, ds \right| \leq \\ &\leq |u'_x(0,T^*)|\ell + \int_0^x (x-\eta)|u''_{x\mu}(\eta,T^*)| \, d\mu(\eta), \end{aligned}$$

или, после применения неравенства Коши–Буняковского,

$$\begin{aligned} |u(x,T^*)| &\leq |u'_x(0,T^*)|\ell + \int_0^\ell 1 \cdot |u''_{x\mu}(\eta,T^*)| \, d\mu(\eta) \leq \\ &\leq |u'_x(0,T^*)| \cdot \ell + \ell \sqrt{\int_0^\ell 1^2 \, d\mu(\eta)} \cdot \sqrt{\int_0^\ell u''_{x\mu}(\eta,T^*) \, d\mu(\eta)} \leq \\ &\leq |u'_x(0,T^*)| \cdot \ell + \ell \frac{\mu(\ell) - \mu(0)}{c_0} \varepsilon. \end{aligned}$$
(3.3.3)

Для оценки $|u'_x(0,T^*)|$ имеем

$$|u'_{x}(x,T^{*}) - u'_{x}(0,T^{*})| = \left| \int_{0}^{x} u''_{x\mu}(s,T^{*}) \, d\mu(s) \right| \leq \int_{0}^{\ell} 1 \cdot |u''_{x\mu}(s,T^{*})| \, d\mu(s) \leq \left| \int_{0}^{\ell} 1^{2} \, d\mu(s) \sqrt{\int_{0}^{\ell} 1^{2} \, d\mu(s)} \sqrt{\int_{0}^{\ell} u''_{x\mu}(s,T^{*}) \, d\mu(s)} \right| \leq C \cdot \varepsilon, \quad (3.3.4)$$

где $C = \frac{\mu(\ell) - \mu(0)}{\sqrt{c_0}} (c_0 = \inf_{[0;\ell]} p(x))$. Из неравенства (3.3.4) мы находим $-C \cdot \varepsilon \leqslant u'_x(x, T^*) - u'_x(0, T^*) \leqslant C \cdot \varepsilon,$ (3.3.5)

И

причем последнее неравенство справедливо при всех $x \in [0; \ell]$. Проинтегрируем (3.3.5) по x по всему отрезку $[0; \ell]$, получим

$$-C \cdot \varepsilon \cdot \ell \leqslant -u'_x(0, T^*) \cdot \ell \leqslant C \cdot \varepsilon \cdot \ell,$$

так как $u(0,T^*) = u(\ell,T^*) = 0$. Из последнего неравенства находим, что $|u'_x(x,T^*)| \leq C \cdot \varepsilon.$

Теперь неравенство (3.3.3) принимает вид

$$|u(x,T^*)| \leqslant \overline{C} \cdot \varepsilon,$$

где \overline{C} — некоторая константа.

Покажем, что решение математической модели существует. Пусть G(x,s) - функция влияния модели

$$\begin{cases}
Lu \equiv \left(pu''_{x\mu}\right)''_{x\sigma} - \left(ru'_{x}\right)'_{\sigma} + uQ'_{\sigma} = F'_{\sigma}, \\
l_{1}u = u(0) = 0, \\
l_{2}u = u''_{x\mu}(0) = 0, \\
l_{3}u = u''_{x\mu}(\ell) = 0, \\
l_{4}u = u(\ell) = 0.
\end{cases}$$
(3.3.6)

Для удобства читателя дадим необходимые определения и докажем существование функции влияния.

Определение 3.3.1. Функцией влияния математической модели (3.3.6) будем называть непрерывную по совокупности переменных x, s (на квадрате $[0; \ell]_S \times [0; \ell]_S$) функцию G(x, s), позволяющую получить решение (3.3.6) в виде

$$u(x) = \int_{0}^{\ell} G(x,s) F'_{\sigma}(s) \, d\sigma(s) \tag{3.3.7}$$

для любой σ -абсолютной непрерывной функции F(x).

Теорема 3.3.1. Пусть модель (3.3.6) невырождена, т.е. однородная модель имеет только тривиальное регение. Тогда функция влияния (3.3.6) существует и единственна.

Доказательство. Пусть $\{\varphi_i(x)\}_{i=1}^{i=4}$ — фундаментальная система решений однородного уравнения Lu = 0, такая, что $l_j \varphi_i = \delta_i^j$, где δ_i^j — символ Кронекера, равный 1, если i = j, и нулю в противном случае. Такая система существует в силу невырожденности модели.

На множестве $\overline{[0;\ell]}_S \times \overline{[0;\ell]}_S$ определим функцию

K(x,s) =

$$= \frac{1}{(pW)(s)} \begin{vmatrix} \varphi_{1}(s) & \varphi_{2}(s) & \varphi_{3}(s) & \varphi_{4}(s) \\ \varphi_{1x}'(s) & \varphi_{2x}'(s) & \varphi_{3x}'(s) & \varphi_{4x}'(s) \\ (p\varphi_{1x\mu}'')(s) & (p\varphi_{2x\mu}'')(s) & (p\varphi_{3x\mu}'')(s) & (p\varphi_{4x\mu}'')(s) \\ \varphi_{1}(x) & \varphi_{2}(x) & \varphi_{3}(x) & \varphi_{4}(x) \end{vmatrix} .$$
(3.3.8)

Формулу (3.3.8) перепишем в виде

$$K(x,s) = \frac{1}{(pW)(s)} \sum_{i=1}^{4} (-1)^{i} \alpha_{i}(s) \varphi_{i}(x), \qquad (3.3.9)$$

где $\alpha_i(s)$ — минор к элементу $\varphi_i(x)$, стоящему на пересечении четвертой строки и *i*-го столбца определителя в правой части (3.3.8).

Покажем, что у функций $\alpha_i(s)$ (i = 1, 2, 3, 4), определенных на $[0; \ell]_S$, нет ненулевых скачков, и, следовательно, могут быть доопределены по непрерывности в точках множества $S(\sigma)$. Рассуждения проведем для $\alpha_1(s)$. Для $\alpha_2(s)$, $\alpha_3(s)$ и $\alpha_4(s)$ рассуждения аналогичны. Так как $\varphi_i(x)$ и $(p\varphi_{ix\mu}'')(x)$ — непрерывны, то

$$\Delta \alpha_1(s) = \alpha_1(s+0) - \alpha_1(s-0) = = - \begin{vmatrix} \varphi_2(s) & \varphi_3(s) & \varphi_4(s) \\ \Delta \varphi_{2x}'(s) & \Delta \varphi_{3x}'(s) & \Delta \varphi_{4x}'(s) \\ (p\varphi_{2x\mu}'')(s) & (p\varphi_{3x\mu}'')(s) & (p\varphi_{4x\mu}'')(s) \end{vmatrix} . (3.3.10)$$

Если *s* точка непрерывности производной $\varphi_{i_x}'(s)$, т. е. *s* не принадлежит $S(\mu) \ (\subset S(\sigma))$, то $\Delta \varphi_{i_x}'(s) = 0$, и поэтому $\Delta \alpha_1(s) = 0$. Если же *s* принадлежит множеству $S(\mu)$, то в определении (3.3.10) вторая и третья строки пропорциональны, так как $\left(p\varphi_{i_x\mu}''\right)(s) = p(s) \cdot \frac{\Delta \varphi_{i_x}'(s)}{\Delta \mu(s)}$. Таким образом, непрерывность $\alpha_1(s)$ доказана.

Из (3.3.9) и непрерывности $\alpha_i(s)$ непосредственно следуют следующие свойства K(x, s):

- 1) K(x, s) непрерывна по совокупности переменных и для всех sK(s, s) = 0;
- 2) производная $K'_x(x,s)$, определенная на $\overline{[0;\ell]_S} \times \overline{[0;\ell]}_S$, при каждом *s* является μ -абсолютно непрерывной на $\overline{[0;\ell]}_{S(\mu)}$ функцией (по x); $r(x)K'_x(x,s) - \sigma$ -абсолютно непрерывна на $\overline{[0;\ell]}_S$; $K'_x(s,s) = 0$;
- 3) вторая производная $K''_{x\mu}(x,s)$ такова, что $p(x)K''_{x\mu}(x,s)$ абсолютно непрерывна на $[0; \ell]$ по переменной x при каждом фиксированном s и $p(s)K''_{x\mu}(s,s) = 0;$

- 4) третья производная $(p(x)K''_{x\mu})'_{x}(x,s)$, определенная на $\overline{[0;\ell]}_{S} \times \overline{[0;\ell]}_{S}$, σ -абсолютно непрерывная на $\overline{[0;\ell]}_{S}$ по переменной x при каждом s, и $(p(s)K''_{x\mu})'_{x}(s,s) = 1$;
- 5) при каждом *s* и почти каждом *x* существуют σ -производные $\left(pK''_{x\mu}\right)''_{x\sigma}(x,s)$ и $(rK'_{x})'_{\sigma}(x,s)$, и при $x \neq s$ функция K(x,s) удовлетворяет однородному условию.

На множестве $\overline{[0;\ell]}_S$ определим функцию

$$v(x) = \int_{0}^{x} K(x,s) F'_{\sigma}(s) \, d\sigma(s). \tag{3.3.11}$$

Из первого свойства K(x,s) следует отсутствие ненулевых скачков у v(x). Доопределим ее по непрерывности во всех точках отрезка $[0; \ell]$. Продолженную функцию будем, для простоты, обозначать также как и исходную.

Используя (3.3.9), равенство (3.3.11) позволяет перезапись в виде

$$v(x) = \frac{1}{(pW)(0)} \sum_{i=1}^{4} (-1)^{i} \varphi_{i}(x) \int_{0}^{x} \alpha_{i}(s) F_{\sigma}'(s) \, d\sigma(s), \qquad (3.3.12)$$

так как (pW)(s) есть константа.

Найдем производную функции v(x). Для этого рассмотрим отношение $\frac{v(x+\varepsilon)-v(x+0)}{\varepsilon}$ при $\varepsilon > 0$. Как нетрудно видеть, его можно представить в виде суммы

$$\begin{split} \frac{v(x+\varepsilon)-v(x+0)}{\varepsilon} &= \\ &= \frac{1}{(pW)(0)} \sum_{i=1}^{4} (-1)^{i} \frac{\varphi_{i}(x+\varepsilon)-\varphi_{i}(x+0)}{\varepsilon} \int_{0}^{x+\varepsilon} \alpha_{i}(s) F_{\sigma}'(s) \, d\sigma(s) + \\ &\quad + \frac{1}{(pW)(0)} \sum_{i=1}^{4} (-1)^{i} \frac{\varphi_{i}(x+0)}{\varepsilon} \int_{x+0}^{x+\varepsilon} \alpha_{i}(s) F_{\sigma}'(s) \, d\sigma(s). \end{split}$$
(3.3.13)
 \\ \text{Так как} \frac{\varphi_{i}(x+\varepsilon)-\varphi_{i}(x+0)}{\varepsilon} \to \varphi_{ix}'(x+0) \text{ M} \\ &\qquad \int_{0}^{x+\varepsilon} \alpha_{i}(s) F_{\sigma}'(s) \, d\sigma(s) \to \int_{0}^{x+0} \alpha_{i}(s) F_{\sigma}'(s) \, d\sigma(s) \end{split}

при $\varepsilon \to +0$, то первая сумма в (3.3.13) стремится к

$$\frac{1}{(pW)(0)} \sum_{i=1}^{4} (-1)^{i} \varphi_{ix}'(x+0) \int_{0}^{x+0} \alpha_{i}(s) F_{\sigma}'(s) \, d\sigma(s) = \\ = \int_{0}^{x+0} K_{x}'(x+0,s) F_{\sigma}'(s) \, d\sigma(s).$$

Покажем, что вторая сумма в правой части (3.3.13) стремится к нулю. Так как $\int_{x+0}^{x+\varepsilon} \alpha_i(s) F'_{\sigma}(s) d\sigma(s) = \int_{x+0}^{x+\varepsilon} \alpha_i(s) dF(s)$ (см., например, [32]), то для второй суммы в правой части (3.3.13) мы имеем

 $\frac{1}{(pW)(0)}\sum_{i=1}^{4}(-1)^{i}\frac{\varphi_{i}(x+0)}{\varepsilon}\int_{x+0}^{x+\varepsilon}\alpha_{i}(s)F_{\sigma}'(s)\,d\sigma(s) = \frac{1}{\varepsilon}\int_{x+0}^{x+\varepsilon}K(x+0,s)\,dF(s).$

Заметим, что последний интеграл существует по Риману-Стильтьеса, так как K(x+0,s) непрерывна и F(x) имеет конечное на $\overline{[0;\ell]}_S$ изменение.

Так как $\varphi_i(s) - \varphi_i(x) = \int_x \varphi'_i(t) dt$, то при некотором $k_i^{(1)}$, принадлежащем $\left[\inf_{x < t \le x + \varepsilon} \varphi'_i(t), \sup_{x < t \le x + \varepsilon} \varphi'_i(t)\right], \varphi_i(s) - \varphi_i(x) = k_i^{(1)}(s - x)$. При этом $k_i^{(1)} \to \varphi'_i(x + 0)$ при $\varepsilon \to +0$ ввиду существования предела $\varphi'_i(\tau)$ при всех τ из $[0; \ell]_S$.

Тогда (обозначая $\mathcal{K}_i = k_i^{(1)} - \varphi_i'(x+0))$

$$\frac{1}{\varepsilon} \int_{x+0}^{x+\varepsilon} K(x+0,s) \, dF(s) = \int_{x+0}^{x+\varepsilon} \frac{s-x}{(pW)(0) \cdot \varepsilon} \times \\ \times \begin{vmatrix} \mathcal{K}_1 & \mathcal{K}_2 & \mathcal{K}_3 & \mathcal{K}_4 \\ \varphi_{1x}'(s) & \varphi_{2x}'(s) & \varphi_{3x}'(s) & \varphi_{4x}'(s) \\ (p\varphi_{1x\mu}'')(s) & (p\varphi_{2x\mu}'')(s) & (p\varphi_{3x\mu}'')(s) & (p\varphi_{4x\mu}'')(s) \\ \varphi_1(x+0) & \varphi_2(x+0) & \varphi_3(x+0) & \varphi_4(x+0) \end{vmatrix} \, dF(s) +$$

$$+ \int_{x+0}^{x+\varepsilon} \frac{s-x}{(pW)(0)\cdot\varepsilon} \begin{vmatrix} \varphi_{1x}'(x+0) & \varphi_{2x}'(x+0) & \varphi_{3x}'(x+0) & \varphi_{4x}'(x+0) \\ \varphi_{1x}'(s) & \varphi_{2x}'(s) & \varphi_{3x}'(s) & \varphi_{4x}'(s) \\ (p\varphi_{1x\mu}'')(s) & (p\varphi_{2x\mu}'')(s) & (p\varphi_{3x\mu}'')(s) & (p\varphi_{4x\mu}'')(s) \\ \varphi_{1}(x+0) & \varphi_{2}(x+0) & \varphi_{3}(x+0) & \varphi_{4}(x+0) \end{vmatrix} dF(s).$$

$$(3.3.14)$$

Оба слагаемых в правой части равенства (3.3.14) стремятся к нулю. В самом деле, для первого из них мы имеем оценку (так как при всех s, принадлежащих отрезку $[x; x + \varepsilon]$, справедливо неравенство $\frac{s-x}{\varepsilon} \leqslant 1$)

$$\left| \int_{x+\varepsilon}^{x+\varepsilon} \frac{s-x}{(pW)(0)\varepsilon} \right| \left| \begin{array}{ccc} \mathcal{K}_1 & \mathcal{K}_2 & \mathcal{K}_3 & \mathcal{K}_4 \\ \varphi_{1x}'(s) & \varphi_{2x}'(s) & \varphi_{3x}'(s) & \varphi_{4x}'(s) \\ p\varphi_{1x\mu}''(s) & p\varphi_{2x\mu}''(s) & p\varphi_{3x\mu}''(s) & p\varphi_{4x\mu}''(s) \\ \varphi_1(x+0) & \varphi_2(x+0) & \varphi_3(x+0) & \varphi_4(x+0) \end{array} \right| dF(s) \right| \leqslant \\ \left| \begin{array}{c} \frac{\chi+\varepsilon}{|(pW)(0)|} \\ \frac{\chi+\varepsilon}{|(pW)(0)|} \\ \frac{\chi+\varepsilon}{|(pW)(0)|} \\ \frac{\chi+\varepsilon}{|(x+0)|} \\ \frac{\chi+\varepsilon}{|(x+0)|} \\ \varphi_1(x+0) \\ \varphi_2(x+0) \\ \varphi_3(x+0) \\ \varphi_4(x+0) \end{array} \right| ,$$
 ричем супремум конечен и $\bigvee_{x+\varepsilon}^{x+\varepsilon} (F) \to 0$ при $\varepsilon \to +0$.

пр x+0

Для второго слагаемого последовательно находим

$$\left| \int_{x+0}^{x+\varepsilon} \frac{s-x}{(pW)(0)\varepsilon} \left| \begin{array}{ccc} \varphi_{1x}'(x+0) & \varphi_{2x}'(x+0) & \varphi_{3x}'(x+0) & \varphi_{4x}'(x+0) \\ \varphi_{1x}'(s) & \varphi_{2x}'(s) & \varphi_{3x}'(s) & \varphi_{4x}'(s) \\ p\varphi_{1x\mu}'(s) & p\varphi_{2x\mu}''(s) & p\varphi_{3x\mu}''(s) & p\varphi_{4x\mu}''(s) \\ \varphi_{1}(x+0) & \varphi_{2}(x+0) & \varphi_{3}(x+0) & \varphi_{4}(x+0) \\ \varphi_{1x}'(s) & \varphi_{2x}'(s) & \varphi_{3x}'(s) & \varphi_{4x}'(s) \\ \varphi_{1x}'(s) & \varphi_{2x}'(s) & \varphi_{3x}'(s) & \varphi_{4x}'(s) \\ \varphi_{1x}'(s) & p\varphi_{2x\mu}''(s) & p\varphi_{3x\mu}''(s) & p\varphi_{4x\mu}''(s) \\ \varphi_{1x}'(s) & p\varphi_{2x\mu}''(s) & p\varphi_{3x\mu}''(s) & p\varphi_{4x\mu}''(s) \\ \varphi_{1x}'(s) & \varphi_{2x}'(s) & \varphi_{3x}'(s) & p\varphi_{4x\mu}''(s) \\ \varphi_{1x}'(s) & \varphi_{2x}'(s) & \varphi_{3x}'(s) & \varphi_{4x}''(s) \\ \varphi_{1x}'(s) & \varphi_{2x}'(s) & \varphi_{3x}''(s) & \varphi_{4x}''(s) \\ \varphi_{1x}'(s) & \varphi_{2x}''(s) & \varphi_{3x}''(s) & \varphi_{4x}''(s) \\ \varphi_{1x}''(s) & \varphi_{2x}''(s) & \varphi_{3x}''(s) & \varphi_{4x}''(s) \\ \varphi_{1x}''(s) & \varphi_{2x}''(s) & \varphi_{2x}''(s) & \varphi_{2x}''(s) \\ \varphi_{2x}''(s) & \varphi_{2x}''(s) & \varphi_{2x}''(s) & \varphi_{2x}''(s) \\ \varphi_{2x}''(s) & \varphi_{2x}''(s) & \varphi_{2x}''(s) & \varphi_{2x}''(s) \\ \varphi_{2x}''(s) & \varphi_{2x}''(s) & \varphi_{2x}''(s) & \varphi_{2x}''(s) \\$$

 $x + \varepsilon$ при $\varepsilon \to +0,$ так как супремум конечен и $\bigvee (F)$ стремится к нулю при x + 0

 $\varepsilon \to +0$. Таким образом

$$v'(x) = \int_{0}^{x} K'_{x}(x,s) F'_{\sigma}(s) \, d\sigma(s) \quad \left(x \in \overline{[0;\ell]}_{S}\right). \tag{3.3.15}$$

Равенство (3.3.15) мы доказали для правых производных, для левых — рассуждения проводятся аналогично.

Покажем, что справедливо равенство

$$v_{x\mu}''(x) = \int_{0}^{x} K_{x\mu}''(x,s) F_{\sigma}'(s) \, d\sigma(s) \quad \left(x \in \overline{[0;\ell]}_{\mu}\right). \tag{3.3.16}$$

Для этого отношение $\frac{v'_x(x+\varepsilon) - v'_x(x+0)}{\mu(x+\varepsilon) - \mu(x+0)}$ представим в виде суммы

$$\frac{v'_{x}(x+\varepsilon) - v'_{x}(x+0)}{\mu(x+\varepsilon) - \mu(x+0)} = \\
= \int_{0}^{x+\varepsilon} \left[\frac{K'_{x}(x+\varepsilon,s) - K'_{x}(x+0,s)}{\mu(x+\varepsilon) - \mu(x+0)} - K''_{x\mu}(x+0,s) \right] F'_{\sigma}(s) \, d\sigma(s) + \\
+ \int_{0}^{x+\varepsilon} K''_{x\mu}(x+0,s) F'_{\sigma}(s) \, d\sigma(s) + \int_{x+0}^{x+\varepsilon} \frac{K'_{x}(x+0,s)}{\mu(x+\varepsilon) - \mu(x+0)} F'_{\sigma}(s) \, d\sigma(s).$$
(3.3.17)

Выражение в квадратных скобках первого слагаемого в правой части (3.3.17) равно

$$\frac{K'_x(x+\varepsilon,s) - K'_x(x+0,s)}{\mu(x+\varepsilon) - \mu(x+0)} - K''_{x\mu}(x+0,s) = \\ = \sum_{i=1}^4 \frac{(-1)^i \alpha_i(s)}{(pW)(0)} \left(\frac{\varphi_{ix}'(x+\varepsilon) - \varphi_{ix}'(x+0)}{\mu(x+\varepsilon) - \mu(x+0)} - \varphi_{ix\mu}''(x+0) \right).$$

Откуда следует, что $\frac{K'_x(x+\varepsilon,s)-K'_x(x+0,s)}{\mu(x+\varepsilon)-\mu(x+0)}$ сходится равномерно к $K''_{x\mu}(x+0,s)$ на $[0;\ell]$ при $\varepsilon \to +0$. Тогда, первое слагаемое в (3.3.17) стремится к нулю при $\varepsilon \to +0$.

Второе слагаемое, очевидно, неограниченно приближается при $\varepsilon \to +0$ к $\int_{0}^{x+0} K''_{x\mu}(x+0,s)F'_{\sigma}(s) d\sigma(s).$

Вводя обозначение $\widehat{\varphi}_i(s) = \frac{\varphi_{ix}'(s) - \varphi_{ix}'(x+0)}{\mu(x+\varepsilon) - \mu(x+0)}$, для третьего слагае-

мого мы последовательно находим

$$\int_{x+0}^{x+\varepsilon} \frac{K'_{x}(x+0,s)}{\mu(x+\varepsilon) - \mu(x+0)} F'_{\sigma}(s) \, d\sigma(s) = \\ = \int_{x+0}^{x+\varepsilon} \frac{1}{(pW)(0)} \begin{vmatrix} \varphi_{1}(s) & \varphi_{2}(s) & \varphi_{3}(s) & \varphi_{4}(s) \\ \hat{\varphi}_{1}(s) & \hat{\varphi}_{2}(s) & \hat{\varphi}_{3}(s) & \hat{\varphi}_{4}(s) \\ p\varphi_{1''_{x\mu}}(s) & p\varphi_{2''_{x\mu}}(s) & p\varphi_{3''_{x\mu}}(s) & p\varphi_{4''_{x\mu}}(s) \\ \varphi'_{1}(x+0) & \varphi'_{2}(x+0) & \varphi'_{3}(x+0) & \varphi'_{4}(x+0) \end{vmatrix} F'_{\sigma}(s) \, d\sigma(s),$$

откуда, в силу равенства

$$\varphi_{i_x}'(s) - \varphi_{i_x}'(x+0) = \int_{x+0}^s \varphi_{i_x\mu}''(t) \, d\mu(t) = k_i^{(2)}(\mu(s) - \mu(x+0)),$$

справедливого при некотором $k_i^{(2)} \in \left[\inf_{x+0 < t \leqslant x+\varepsilon} \varphi_{ix\mu}''(t), \sup_{x+0 < t \leqslant x+\varepsilon} \varphi_{ix\mu}''(t)\right],$ следует $(\mathcal{K}_i^{(2)} = k_i^{(2)} - \varphi_{ix\mu}''(x+0))$

$$\begin{split} & \int_{x+0}^{x+\varepsilon} \frac{K'_{x}(x+0,s)}{\mu(x+\varepsilon) - \mu(x+0)} F'_{\sigma}(s) \, d\sigma(s) = \\ & = \int_{x+0}^{x+\varepsilon} \frac{\mu(s) - \mu(x+0)}{(\mu(x+\varepsilon) - \mu(x+0))(pW)(0)} \times \\ & \times \left| \begin{array}{c} \varphi_{1}(s) & \varphi_{2}(s) & \varphi_{3}(s) & \varphi_{4}(s) \\ \mathcal{K}_{1}^{(2)} & \mathcal{K}_{2}^{(2)} & \mathcal{K}_{3}^{(2)} \\ p\varphi_{1'x\mu}(s) & p\varphi_{2'x\mu}(s) & p\varphi_{3'x\mu}^{''}(s) & p\varphi_{4'x\mu}^{''}(s) \\ \varphi_{1'x}(x+0) & \varphi_{2'x}(x+0) & \varphi_{3'x}(x+0) & \varphi_{4'x}(x+0) \end{array} \right| F'_{\sigma}(s) \, d\sigma(s) + \\ & + \int_{x+0}^{x+\varepsilon} \frac{\mu(s) - \mu(x+0)}{(\mu(x+\varepsilon) - \mu(x+0))(pW)(0)} \times \\ & \times \left| \begin{array}{c} \varphi_{1}(s) & \varphi_{2}(s) & \varphi_{3}(s) & \varphi_{4}(s) \\ \varphi_{1'x\mu}(x+0) & \varphi_{2'x\mu}(x+0) & \varphi_{3''x\mu}^{''}(x+0) & \varphi_{4''x\mu}(x+0) \\ p\varphi_{1'x\mu}(s) & p\varphi_{2''x\mu}(s) & p\varphi_{3''x\mu}^{''}(s) & p\varphi_{4''x\mu}(s) \\ \varphi_{1'x}(x+0) & \varphi_{2'x}(x+0) & \varphi_{3''x}(x+0) & \varphi_{4''x\mu}(x+0) \end{array} \right| F'_{\sigma}(s) \, d\sigma(s). \end{split}$$

$$(3.3.18)$$

Проводя рассуждения, аналогичные проведенным для (3.3.14), делаем

вывод, что оба слагаемых в правой части (3.3.18) стремятся к нулю, следовательно,

$$\lim_{\varepsilon \to +0} \int_{x+0}^{x+\varepsilon} \frac{K'_x(x+0,s)}{\mu(x+\varepsilon) - \mu(x+0)} F'_{\sigma}(s) \, d\sigma(s) = 0.$$

Тогда, переходя к пределу $\varepsilon \to +0$ в равенстве (3.3.17) будем иметь

$$v_{x\mu}''(x+0) = \int_{0}^{x+0} K_{x\mu}''(x+0,s) F_{\sigma}'(s) \, d\sigma(s). \tag{3.3.19}$$

Аналогично доказывается равенство (3.3.19) для левых производных.

Для точек x, принадлежащих множеству $S(\mu)$, последовательно имеем

$$\begin{aligned} \Delta v'_x(x) &= v'_x(x+0) - v'_x(x-0) = \\ &= \int_0^{x+0} K'_x(x+0,s) F'_\sigma(s) \, d\sigma(s) - \int_0^{x-0} K'_x(x-0,s) F'_\sigma(s) \, d\sigma(s) = \\ &= \int_0^{x+0} \Delta K'_x(x,s) F'_\sigma(s) \, d\sigma(s) + K'_x(x-0,x) \Delta F(x). \end{aligned}$$

Но $K'_x(x-0,x) = 0$, поэтому, последнее равенство принимает вид

$$\Delta v'_x(x) = \int_0^{x+0} \Delta K'_x(x,s) F'_\sigma(s) \, d\sigma(s) = \int_0^{x-0} \Delta K'_x(x,s) F'_\sigma(s) \, d\sigma(s). \quad (3.3.20)$$

Равенства (3.3.19) и (3.3.20) вместе дают

$$v_{x\mu}''(x) = \int_{0}^{x} K_{x\mu}''(x,s) F_{\sigma}'(s) \, d\sigma(s) \tag{3.3.21}$$

при всех $x \in \overline{[0;\ell]}_{\mu}$, причем в случае когда $x \in S(\mu)$, интегрирование может производится как в пределах от 0 до x - 0, так и в пределах от 0 до x + 0.

Проводя аналогичное рассуждение для отношения $\frac{1}{\varepsilon}((pv''_{x\mu})(x+\varepsilon) - (pv_{x\mu})(x+0))$ мы придем к равенству

$$(pv_{x\mu}'')_x'(x) = \int_0^x (pK_{x\mu}'')_x'(x,s)F_{\sigma}'(s)\,d\sigma(s), \qquad (3.3.22)$$

которое справедливо не только для правых производных, но и для левых.

Пусть теперь x — точка в которой существуют σ -производные

 $(p\varphi_{i_{x\mu}}'')_{x\sigma}''(x), (r\varphi_{i_{x}}')_{\sigma}'(x) \ (i = 1, 2, 3, 4), F_{\sigma}'(x)$ и $Q_{\sigma}'(x)$. Отношение $\frac{(pv_{x\mu}'')_{x}'(x + \varepsilon) - (pv_{x\mu}'')'(x + 0)}{\sigma(x + \varepsilon) - \sigma(x + 0)}$ представим ввиде суммы:

$$\frac{(pv_{x\mu}'')_x'(x+\varepsilon) - (pv_{x\mu}'')_x'(x+0)}{\sigma(x+\varepsilon) - \sigma(x+0)} =$$

$$= \int_0^{x+\varepsilon} \frac{(pK_{x\mu}'')_x'(x+\varepsilon,s) - (pK_{x\mu}'')_x'(x+0,s)}{\sigma(x+\varepsilon) - \sigma(x+0)} F_{\sigma}'(s) \, d\sigma(s) +$$

$$+ \int_{x+0}^{x+\varepsilon} \frac{(pK_{x\mu}'')'(x+0,s) - 1}{\sigma(x+\varepsilon) - \sigma(x+0)} F_{\sigma}'(s) \, d\sigma(s) +$$

$$+ \frac{1}{\sigma(x+\varepsilon) - \sigma(x+0)} \int_{x+0}^{x+\varepsilon} F_{\sigma}'(s) \, d\sigma(s). \quad (3.3.23)$$

Также как и при доказательстве (3.3.16) устанавливается равномерная сходимость $\frac{(pK''_{x\mu})'_x(x+\varepsilon,s) - (pK''_{x\mu})'_x(x+0,s)}{\sigma(x+\varepsilon) - \sigma(x+0)} \kappa (pK''_{x\mu})''_{x\sigma}(x+0,s) при$ $\varepsilon \to +0$. Тогда, первое слагаемое в (3.3.23) в пределе нам дает

$$\int_{0}^{x+0} (pK''_{x\mu})''_{x\sigma}(x+0,s)F'_{\sigma}(s) \, d\sigma(s).$$

Для второго последовательно находим (через $\psi_i^*(s)$ мы обозначили разность $(p\varphi_{ix\mu}'')_x'(x+0) - (p\varphi_{ix\mu}'')_x'(s))$

$$\begin{split} \int_{x+0}^{x+\varepsilon} & \frac{(pK_{x\mu}'')_x'(x+0,s)-1}{\sigma(x+\varepsilon)-\sigma(x+0)} F_{\sigma}'(s) \, d\sigma(s) = \\ & = \int_{x+0}^{x+\varepsilon} \frac{1}{(pW)(0)} \begin{vmatrix} \varphi_1(s) & \varphi_2(s) & \varphi_3(s) & \varphi_4(s) \\ \varphi_1'_x(s) & \varphi_2'_x(s) & \varphi_3'_x(s) & \varphi_4'_x(s) \\ \varphi_1'_x(s) & \varphi_2'_x(s) & \varphi_3'_x(s) & \varphi_4'_x(s) \\ p\varphi_1''_{x\mu}(s) & p\varphi_2''_{x\mu}(s) & p\varphi_3''_{x\mu}(s) & p\varphi_4''_{x\mu}(s) \\ \psi_1^*(s) & \psi_2^*(s) & \psi_3^*(s) & \psi_4^*(s) \end{vmatrix} \times \\ & \times \frac{F_{\sigma}'(s)}{\sigma(x+\varepsilon)-\sigma(x+0)} \, d\sigma(s). \end{split}$$
Правую часть последнего равенства можно представить в виде

$$\int_{x+0}^{x+\varepsilon} \frac{(pK_{x\mu}'')_x'(x+0,s)-1}{\sigma(x+\varepsilon)-\sigma(x+0)} F_{\sigma}'(s) \, d\sigma(s) = \\ = \int_{x+0}^{x+\varepsilon} \frac{1}{(pW)(0)} \sum_{i=1}^{4} (-1)^i \alpha_i(s) \frac{(p\varphi_{ix\mu}'')_x'(x+0) - (p\varphi_{ix\mu}'')_x'(s)}{\sigma(x+\varepsilon) - \sigma(x+0)} F_{\sigma}'(s) \, d\sigma(s).$$
(3.3.24)

Так как $(p\varphi_{ix\mu}'')_x'(x+0) - (p\varphi_{ix\mu}'')_x'(s) = k_i^{(3)}(\sigma(x+0) - \sigma(s))$ при некотором $k_i^{(3)} \in \left[\inf_{x+0 < t \leqslant s} (p\varphi_{ix\mu}'')_x'(t), \sup_{x+0 < t \leqslant s} (p\varphi_{ix\mu}'')_x'(t)\right]$, то из равенства (3.3.24) следует оценка

$$\left| \int_{x+0}^{x+\varepsilon} \frac{(pK_{x\mu}'')_x'(x+0,s)-1}{\sigma(x+\varepsilon)-\sigma(x+0)} \cdot F_{\sigma}'(s) \, d\sigma(s) \right| \leq \\ \leq \frac{1}{|(pW)(0)|} \sum_{i=1}^4 \sup_s |\alpha_i(s)| \sup_s |(p\varphi_{ix\mu}'')_x'(s)| \cdot \bigvee_{x+\varepsilon}^{x+\varepsilon} (F) \, d\sigma(s) \right| \leq C_{x+\varepsilon}^{x+\varepsilon}$$

но сумма в правой части последнего неравенства ограничена и $\bigvee_{x+0} (F) \to$

0 при $\varepsilon \to +0$. Поэтому второе слагаемое в равенстве (3.3.23) стремиться к нулю при $\varepsilon \to +0$.

Для последнего слагаемого в правой части (3.3.23), мы имеем

$$\frac{1}{\sigma(x+\varepsilon) - \sigma(x+0)} \int_{x+0}^{x+\varepsilon} F'_{\sigma}(s) d\sigma(s) = F'_{\sigma}(x+0),$$

так как x — точка, в которой производная $F'_{\sigma}(x)$ существует.

Таким образом,

$$(pv_{x\mu}'')_{x\sigma}''(x+0) = \int_{0}^{x+0} (pK_{x\mu}'')_{x\sigma}''(x+0,s)F_{\sigma}'(s)\,d\sigma(s) + F_{\sigma}'(x+0).$$

Аналогично доказывается равенство для левых производных.

Пусть теперь $x \in S(\sigma)$. Тогда

$$\Delta(pv_{x\mu}'')_x'(x) = (pv_{x\mu}'')_x'(x+0) - (pv_{x\mu}'')_x'(x-0) =$$

$$= \int_{0}^{x+0} [(pK''_{x\mu})'_{x}(x+0,s) - (pK''_{x\mu})'_{x}(x-0,s)]F'_{\sigma}(s) d\sigma(s) + \int_{x-0}^{x+0} (pK''_{x\mu})'_{x}(x-0,s)F'_{\sigma}(s) d\sigma(s) = \int_{0}^{x+0} \Delta (pK''_{x\mu})'_{x}(x,s)F'_{\sigma}(s) d\sigma(s) + (pK''_{x\mu})'_{x}(x-0,x)\Delta F(x).$$

Из свойств K(x,s) следует, что $(pK''_{x\mu})'_x(x-0,x) = (pK''_{x\mu})'_x(x+0,x) = 1.$ Поэтому

$$\Delta(pv_{x\mu}'')_{x}'(x) = \int_{0}^{x+0} \Delta_{x}(pK_{x\mu}'')_{x}'(x,s)F_{\sigma}'(s)\,d\sigma(s) + \Delta F(x),$$

причем интеграл может быть взят в пределах от 0 до x - 0, так как $(pK''_{x\mu})'_x(x - 0, x) = (pK''_{x\mu})'_x(x + 0, x).$

Таким образом,

$$(pv_{x\mu}'')_{x\sigma}''(x) = \int_{0}^{x} (pK_{x\mu}'')_{x\sigma}''(x,s)F_{\sigma}'(s) \, d\sigma(s) + F_{\sigma}'(x) \tag{3.3.25}$$

для всякого $x \in \overline{[0;\ell]}_{\sigma}$, для которого существуют производные $(p\varphi_{i'x\mu}'')'_{x\sigma}(x)$ (i = 1, 2, 3, 4), $F'_{\sigma}(x)$ и $Q'_{\sigma}(x)$. Аналогично устанавливается равенство

$$(rv'_x)'_{\sigma}(x) = \int_0^x (rK'_x)'_{\sigma}(x,s)F'_{\sigma}(s)\,d\sigma(s). \tag{3.3.26}$$

Равенства (3.3.25), (3.3.26) и (3.3.11) вместе показывают, что функция v(x) удовлетворяет неоднородному уравнению

$$(pv''_{x\mu})''_{x\sigma}(x) - (rv'_x)'_{\sigma}(x) + vQ'_{\sigma}(x) = F'_{\sigma}(x).$$
(3.3.27)

Положим

$$u(x) = v(x) + \sum_{i=1}^{4} C_i \varphi_i(x), \qquad (3.3.28)$$

где C_i — произвольные постоянные; $\{\varphi_i(x)\}_{i=1}^{i=4}$, напомним, является фундаментальной системой решений однородного уравнения, функция v(x)определяется равенством (3.3.11). Пусть

$$g(x,s) = \begin{cases} 0, & \text{если } 0 \leqslant x < s \leqslant \ell, \\ K(x,s), & \text{если } 0 \leqslant s \leqslant x \leqslant \ell. \end{cases}$$

Тогда (3.3.11) можно записать в виде

$$v(x) = \int_{0}^{\ell} g(x,s) F'_{\sigma}(s) \, d\sigma(s).$$
 (3.3.29)

Функция u(x), определяемая равенством (3.3.28), как нетрудно видеть, является общим решением неоднородного уравнения $Lu = F'_{\sigma}$. Подберем константы C_i так, чтобы u(x) удовлетворяла граничным условиям, т. е. $l_j u = 0$ (j = 1, 2, 3, 4), для этого необходимо и достаточно, чтобы

$$l_j v + \sum_{i=1}^4 C_i l_j \varphi_i = 0.$$
 (3.3.30)

Последняя система имеет единственное решение в силу невырожденности математической модели, более того, в силу выбора системы $\{\varphi_i(x)\}$ будем иметь $l_j v + C_j = 0$, откуда следует $C_j = -l_j v$. Таким образом,

$$u(x) = \int_{0}^{\ell} g(x,s) F'_{\sigma}(s) \, d\sigma(s) - \sum_{i=1}^{4} \varphi_i(x) l_i(v). \tag{3.3.31}$$

Так так l_j непрерывный функционал на пространстве решений, то интеграл и функционал l_j можно поменять местами:

$$l_i(v) = \int_0^\ell l_i(g(\cdot, s)) F'_{\sigma}(s) \, d\sigma(s), \qquad (3.3.32)$$

где точка означает по какому аргументу применяется функционал.

Равенство (3.3.31) перепишем в виде

$$u(x) = \int_0^\ell \left[g(x,s) - \sum_{i=1}^4 \varphi_i(x) l_i(g(\cdot,s)) \right] F'_\sigma(s) \, d\sigma(s).$$

Тогда функция влияния G(x,s) математической модели (3.3.6) имеет вид

$$G(x,s) = g(x,s) - \sum_{i=1}^{4} \varphi_i(x) l_i(g(\cdot,s)).$$
(3.3.33)

Существование функции влияния доказано.

Покажем её единственность. Предположим противное: существуют две различные функции влияния $G_1(x,s)$ и $G_2(x,s)$. Так как они различны, то найдётся такая внутренняя точка (x_0, s_0) , что $G_1(x_0, s_0)$ – $G_2(x_0, s_0) \neq 0$, причём без ограничения общности можно считать, что $G_1(x_0, s_0) - G_2(x_0, s_0) > 0$. Из непрерывности вытекает существование окрестности $U_{\varepsilon}(x_0, s_0)$ точки (x_0, s_0) такой, что для всех (x, s) из $U_{\varepsilon}(x_0, s_0)$ справедливо неравенство $G_1(x,s) - G_2(x,s) \ge \eta_0 > 0$ при некоторой η_0 .

В равенство $\int_{0}^{0} [G_1(x,s) - G_2(x,s)] F'_{\sigma}(s) d\sigma = 0$, которое справедливо

для любой σ -абсолютно непрерывной функции F(x), подставим функцию

$$\widehat{F}(x) = \begin{cases} 0 & \text{если } x \leq s_0 - \varepsilon, \\ \frac{\sigma(x) - \sigma(s_0 - \varepsilon)}{\sigma(s_0 + \varepsilon) - \sigma(s_0 - \varepsilon)} & \text{если } s_0 - \varepsilon < x < s_0 + \varepsilon, \\ 1 & \text{если } x \geq s_0 + \varepsilon, \end{cases}$$

 σ -абсолютная непрерывность которой очевидна, будем иметь

$$0 = \int_{0}^{\ell} [G_1(x,s) - G_2(x,s)] \widehat{F}'_{\sigma}(s) \, d\sigma(s) = \int_{s_0 - \varepsilon}^{s_0 + \varepsilon} \left[\frac{G_1(x,s) - G_2(x,s)}{\sigma(s_0 + \varepsilon) - \sigma(s_0 - \varepsilon)} \right] \, d\sigma(s).$$

Тогда 0 = $\int_{s_0-\varepsilon}^{s_0+\varepsilon} \frac{G_1(x,s) - G_2(x,s)}{\sigma(s_0+\varepsilon) - \sigma(s_0-\varepsilon)} d\sigma(s) \ge \eta_0 > 0$ для всех $x \in [x_0 - \varepsilon, x_0 + \varepsilon]$. Полученное противоречие и доказывает единственность

функции влияния. Теорема доказана.

Замечание 3.3.1. При доказательстве теоремы мы брали фундаментальную систему $\{\varphi_i(x)\}_{i=1}^4$, биортогональную к функционалам $\{l_j\}_{j=1}^4$, т. е. $l_j\varphi_i = \delta_i^j$, где δ_i^j – символ Кронекера, равный 1, если i = j, и 0, если $i \neq j$. В качестве $\{\varphi_i(x)\}$ можно брать произвольную фундаментальную систему. В этом случае формула (3.3.33) принимает вид

$$G(x,s) = \frac{1}{\Delta} \begin{vmatrix} g(x,s) & \varphi_1(x) & \varphi_2(x) & \varphi_3(x) & \varphi_4(x) \\ l_1(g(\cdot,s)) & l_1\varphi_1 & l_1\varphi_2 & l_1\varphi_3 & l_1\varphi_4 \\ l_2(g(\cdot,s)) & l_2\varphi_1 & l_2\varphi_2 & l_2\varphi_3 & l_2\varphi_4 \\ l_3(g(\cdot,s)) & l_3\varphi_1 & l_3\varphi_2 & l_3\varphi_3 & l_3\varphi_4 \\ l_4(g(\cdot,s)) & l_4\varphi_1 & l_4\varphi_2 & l_4\varphi_3 & l_4\varphi_4 \end{vmatrix},$$

где Δ — определитель матрицы $||l_j \varphi_i||_{i,j=1}^4$.

Замечание 3.3.2. Найдя $l_j(g(\cdot,s))$, формулу (3.3.33) можно записать в виде

$$G(x,s) = g(x,s) - l_3(g(\cdot,s))\varphi_3(x) - l_4(g(\cdot,s))\varphi_4(x),$$

mak kak $l_1(g(\cdot, s)) \equiv 0 \ u \ l_2(g(\cdot, s)) \equiv 0.$

Вернемся к анализу математической модели (3.3.1). Если G(x,s) функция влияния (3.3.6), то (3.3.1) эквивалентна уравнению Au = F, где

$$Au = \int_{0}^{t} (t - \tau)u(x, \tau) \, d\tau + \int_{0}^{\ell} G(x, s)u(s, t) \, dM(x)$$

И

$$F(x,t) = \int_{0}^{\ell} \left[\varphi_0(s) + \varphi_1(s)t + \int_{0}^{t} (t-\tau)f(s,\tau) d\tau \right] dM(s).$$

Пусть F(x,t) принадлежит образу AE, тогда уравнение Au = F имеет в E решение.

Глава 4

Адаптация метода конечных элементов для математических моделей с негладкими решениями и численные эксперименты

В этой главе метод конечных элементов адаптируется для изучаемых моделей; получена оценка погрешности. Далее описывается программный комплекс, который позволяет находить приближенное решение модели.

В дальнейшем, для удобства изложения мы будем считать, что $p(x) \equiv 1$.

4.1 Построение алгоритма для математической модели второго порядка

Приближенное решение $u_N(x,t)$ математической модели

$$\begin{cases} M'_{\sigma}(x)\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial \sigma} \left(p(x)\frac{\partial u}{\partial x} \right) - u\frac{dQ}{d\sigma} + f(x,t), \\ u(0,t) = u(\ell,t) = 0, \\ u(x,0) = \overline{\varphi}_0(x), \\ u'_t(x,0) = \overline{\varphi}_1(x), \end{cases}$$
(4.1.1)

будем искать в виде

$$u_N(x,t) = \sum_{k=1}^{N-1} a_k(t)\varphi_k(x),$$

где $a_k(t)$ — неизвестные дважды непрерывно дифференцируемые функции, $\varphi_k(x)$ — базисные функции, определяемые следующим образом. Отрезок $[0; \ell]$ разобьем на N равных (для удобства) частей, и

$$\varphi_k(x) = \begin{cases} (x - x_{k-1})\frac{N}{\ell}, & \text{если } x \in [x_{k-1}; x_k] \\ (x_{k+1} - x)\frac{N}{\ell}, & \text{если } x \in (x_k; x_{k+1}] \\ 0, & \text{если } x \notin [x_{k-1}; x_{k+1}] \end{cases}$$

здесь $x_k = k \frac{\ell}{N}, \ k = 0, 1, 2, \dots, N$. Количество базисных функций объясняется тем, что оба условия $u(0, \ell) = u(\ell, t) = 0$, которым должны удовлетворять базисные функции, являются главными.

Уравнение в (4.1.1) умножим на базисную функцию $\varphi_n(x)$ (n = 1, 2, ..., N - 1), и проинтегрируем по мере σ по $[0; \ell]$:

$$\int_{0}^{\ell} M'_{\sigma}(x) u_{tt}''(x,t) \varphi_n(x) \, d\sigma = \int_{0}^{\ell} \left(p(x) u_x'(x,t) \right)'_{\sigma} \varphi_n(x) \, d\sigma - \int_{0}^{\ell} u(x,t) \varphi_n(x) Q'_{\sigma}(x) \, d\sigma + \int_{0}^{\ell} f(x,t) \varphi_n(x) \, d\sigma.$$

Проинтегрируем интеграл $\int_{0}^{t} (p(x)u'_{x}(x,t))'_{\sigma} \varphi_{n}(x) d\sigma$ по частям, и вос-

пользовавшись граничными условиями (которым удовлетворяют базисные функции), будем иметь

$$\int_{0}^{\ell} M'_{\sigma}(x) u_{tt}''(x,t) \varphi_n(x) \, d\sigma + \int_{0}^{\ell} p(x) u_x'(x,t) \varphi_{nx}'(x) \, d\sigma + \int_{0}^{\ell} u(x,t) \varphi_n(x) Q'_{\sigma}(x) \, d\sigma = \int_{0}^{\ell} f(x,t) \varphi_n(x) \, d\sigma.$$

Подставляя $u_N(x,t)$ в последнее равенство, получим

$$\sum_{k=1}^{N-1} a_k''(t) \int_0^\ell \varphi_k(x) \varphi_n(x) \, dM(x) + \sum_{k=1}^{N-1} a_k(t) \int_0^\ell p(x) \varphi_{kx}'(x) \varphi_{nx}'(x) \, dx +$$

$$+\sum_{k=1}^{N-1}a_k(t)\int_0^\ell\varphi_k(x)\varphi_n(x)\,dQ(x)=\int_0^\ell f(x,t)\varphi_n(x)\,d\sigma$$

 $(n = 1, 2, \dots, N - 1)$. Таким образом, мы получаем систему линейных обыкновенных дифференциальных уравнений

$$\widehat{A}a''(t) + \widehat{B}a = \widehat{F}, \qquad (4.1.2)$$

где \widehat{A}
и \widehat{B} — квадратные матрицы порядка N-1,коэф
фициенты которых находятся по формулам

$$\widehat{A}_{kn} = \widehat{A}_{nk} = \int_{0}^{\ell} \varphi_k(x) \varphi_n(x) \, dM(x),$$

$$\widehat{B}_{kn} = \widehat{B}_{nk} = \int_{0}^{\ell} p(x)\varphi_{kx}'(x)\varphi_{nx}'(x)\,dx + \int_{0}^{\ell} \varphi_{k}(x)\varphi_{n}(x)\,dQ(x),$$

 $a(t) = (a_1(t), a_2(t), \dots, a_{N_1}(t))^T$ и $\widehat{F}(t) = (F_1(t), F_2(t), \dots, F_{N-1}(t))^T$ – вектор-столбцы, компоненты $F_n(t)$ определяются равенствами

$$F_n(t) = \int_0^\ell f(x,t)\varphi_n(x) \, d\sigma.$$

Умножим каждое начальное условие $u(x, 0) = \overline{\varphi}_0(x)$ и $u'_t(x, 0) = \overline{\varphi}_1(x)$ на базисную функцию $\varphi_n(x)$, проинтегрируем по x в пределах от 0 до ℓ , подставим вместо u(x, t) функцию $u_N(x, t)$:

$$\sum_{k=1}^{N-1} a_k(0) \int_0^\ell \varphi_k(x) \varphi_n(x) \, dx = \int_0^\ell \overline{\varphi}_0(x) \varphi_n(x) \, dx,$$
$$\sum_{k=1}^{N-1} a_k'(0) \int_0^\ell \varphi_k(x) \varphi_n(x) \, dx = \int_0^\ell \overline{\varphi}_1(x) \varphi_n(x) \, dx,$$

или, в матричном виде,

$$\widehat{C}a(0) = H_1, \quad \widehat{C}a'(0) = H_2,$$
(4.1.3)

где $\widehat{C}-$ квадратная матрица с коэффициентами

$$\widehat{C}_{kn} = \widehat{C}_{nk} = \int_{0}^{\ell} \varphi_k(x) \varphi_n(x) \, dx,$$

 H_1 и H_2 — вектор-столбцы с координатами (j = 1, 2)

$$(H_j)_n = \int_0^\ell \overline{\varphi}_{j-1}(x)\varphi_n(x)\,dx.$$

Матрицы \widehat{A} и \widehat{C} являются матрицами Грамма системы $\{\varphi_k(x)\}_{k=1}^{N-1}$ линейно независимых функций. Поэтому \widehat{A} и \widehat{C} имеют обратные. Тогда, (4.1.2) и (4.1.3) принимают вид

$$a''(t) + \widehat{A}^{-1}\widehat{B}a = \widehat{A}^{-1}\widehat{F},$$
 (4.1.4)

$$a(0) = \widehat{C}^{-1}H_1, \quad a'(0) = \widehat{C}^{-1}H_2.$$
 (4.1.5)

В классической теории обыкновенных дифференциальных уравнений доказывается, что (4.1.4), дополненная начальными условиями (4.1.5), имеет единственное решение.

Для численного решения (4.1.4), (4.1.5) применим явную схему (τ — шаг по временной переменной). Для реализации алгоритма имеем следующие формулы

$$\frac{a_k((j+1)\tau) - 2a_k(j\tau) + a_k((j-1)\tau)}{\tau^2} + \sum_{j=1}^{N-1} \eta_{k,j} a_j(j\tau) = F_k(j\tau),$$

$$k = 1, 2, \dots, N-1,$$

где $\eta_{k,n}$ — коэффициенты матрицы $\widehat{A}^{-1}\widehat{B}$. Два начальных слоя мы найдем используя начальные данные:

$$a_k(0) = \left(\widehat{C}^{-1}H_1\right)_k, \frac{a_k(\tau) - a_k(0)}{\tau} = \left(\widehat{C}^{-1}H_2\right)_k$$

4.2 Оценка скорости сходимости

Обозначим $w(x,t) = u(x,t) - u_N(x,t)$ и $u_I(x,t) = \sum_{k=1}^{N-1} u(x_k,t)\varphi_k(x).$ Для всех $t \in [0;T]$ справедливы тождества

$$\int_{0}^{\ell} w_{tt}''(x,t) M_{\sigma}'(x) \varphi_{n}(x) \, d\sigma + \int_{0}^{\ell} p(x) w_{x}'(x,t) \varphi_{nx}'(x) \, dx + \\ + \int_{0}^{\ell} w(x,t) \varphi_{n}(x) Q_{\sigma}'(x) \, d\sigma \equiv 0 \quad (n = 1, 2, \dots, N - 1), \\ \int_{0}^{\ell} w_{t}'(x,0) \varphi_{n}(x) \, dx = 0, \quad \int_{0}^{\ell} w(x,0) \varphi_{n}(x) \, dx = 0,$$

И

$$\int_{0}^{t} \int_{0}^{\ell} w_{tt}''(x,\tau) w_{t}'(x,\tau) M_{\sigma}'(x) \, d\sigma \, d\tau + \int_{0}^{t} \int_{0}^{\ell} p(x) w_{x}'(x,\tau) w_{tx}''(x,\tau) \, dx \, d\tau + \\ + \int_{0}^{t} \int_{0}^{\ell} Q_{\sigma}'(x) w(x,\tau) w_{t}'(x,\tau) \, d\sigma \, d\tau \equiv \\ \equiv \int_{0}^{t} \int_{0}^{\ell} w_{tt}''(x,\tau) (u_{t}'(x,\tau) - u_{I}'(x,\tau)) M_{\sigma}'(x) \, d\sigma \, d\tau + \\ + \int_{0}^{t} \int_{0}^{\ell} p(x) w_{x}'(x,\tau) (u_{t}'(x,\tau) - u_{I}'(x,\tau)) u_{\sigma}'(x,\tau) \, d\sigma \, d\tau + \\ + \int_{0}^{t} \int_{0}^{\ell} p(x) w_{x}'(x,\tau) (u_{t}'(x,\tau) - u_{I}'(x,\tau)) u_{\sigma}'(x,\tau) \, d\sigma \, d\tau.$$
(4.2.1)

Докажем (4.2.1), остальные очевидны. Левая часть (4.2.1) преобразуется к следующему выражению

$$\int_{0}^{t} \int_{0}^{\ell} w_{tt}''(x,\tau)(x,\tau)(u_{t}'(x,\tau) - u_{It}'(x,\tau))M_{\sigma}'(x)\,d\sigma\,d\tau +$$

$$+ \int_{0}^{t} \int_{0}^{\ell} p(x)w'_{x}(x,\tau) \left(u'_{t}(x,\tau) - u_{I'_{t}}(x,\tau)\right)'_{x} dx d\tau + + \int_{0}^{t} \int_{0}^{\ell} Q'_{\sigma}(x)w(x,\tau) \left(u'_{t}(x,\tau) - u_{I'_{t}}(x,\tau)\right) dx d\tau + + \int_{0}^{t} \left\{ \int_{0}^{\ell} w''_{tt}(x,\tau) \left(u_{I'_{t}}(x,\tau) - u_{N'_{t}}(x,\tau)\right) M'_{\sigma}(x) d\sigma + + \int_{0}^{\ell} p(x)w'_{x}(x,\tau) \left(u_{I'_{t}}(x,\tau) - u_{N'_{t}}(x,\tau)\right)'_{x} dx + + \int_{0}^{\ell} Q'_{\sigma}(x)w(x,\tau) \left(u_{I'_{t}}(x,\tau) - u_{N'_{t}}(x,\tau)\right) d\sigma \right\} dt.$$

Остается показать, что выражение в фигурных скобках равно нулю. Вспоминая определения $u_N(x,t)$ и $u_I(x,t)$, выражение в фигурных скобках перепишем в виде

$$\begin{split} \sum_{i=1}^{N-1} \left(u_t'(x_i,\tau) - a_{i_t}'(\tau) \right) \int_0^\ell u_{tt}''(x,\tau) \varphi_i(x) M_\sigma'(x) \, d\sigma - \\ &- \sum_{j=1}^{N-1} \sum_{i=1}^{N-1} a_{j_{tt}''}(\tau) \left(u_t'(x_i,\tau) - a_{i_t}'(\tau) \right) \int_0^\ell \varphi_i(x) \varphi_j(x) M_\sigma'(x) \, d\sigma + \\ &+ \sum_{i=1}^{N-1} \left(u_t'(x_i,\tau) - a_{i_t}'(\tau) \right) \int_0^\ell p(x) u_x'(x,\tau) \varphi_{i_x}'(x) \, dx - \\ &- \sum_{j=1}^{N-1} \sum_{i=1}^{N-1} a_j(\tau) \left(u_t'(x_i,\tau) - a_{i_t}'(\tau) \right) \int_0^\ell p(x) \varphi_{i_x}'(x) \varphi_{j_x}'(x) \, dx + \\ &+ \sum_{i=1}^{N-1} \left(u_t'(x_i,\tau) - a_{i_t}'(\tau) \right) \int_0^\ell Q_\sigma'(x) u(x,\tau) \varphi_i(x) \, d\sigma - \\ &- \sum_{j=1}^{N-1} \sum_{i=1}^{N-1} a_j(\tau) \left(u_t'(x_i,\tau) - a_{i_t}'(\tau) \right) \int_0^\ell Q_\sigma'(x) \varphi_i(x) \varphi_j(x) \, dx = \end{split}$$

$$\begin{split} &= \sum_{i=1}^{N-1} \left(u_t'(x_i,\tau) - a_{it}'(\tau) \right) \int_0^\ell \left[u_{tt}''(x,\tau) M_\sigma'(x) - \left(p(x) u_x'(x,\tau) \right)_\sigma' + \right. \\ &+ \left. Q_\sigma'(x) u(x,\tau) \right] \varphi_i(x) \, d\sigma - \\ &- \sum_{i=1}^{N-1} \left(u_t'(x_i,\tau) - a_{it}'(\tau) \right) \sum_{j=1}^{N-1} a_{jtt}''(\tau) \int_0^\ell \varphi_i(x) \varphi_j(x) M_\sigma'(x) \, d\sigma - \\ &- \left. \sum_{i=1}^{N-1} \left(u_t'(x_i,\tau) - a_{it}'(\tau) \right) \sum_{j=1}^{N-1} \left[\int_0^\ell p(x) \varphi_{ix}'(x) \varphi_{jx}'(x) \, dx + \right. \\ &+ \left. \int_0^\ell Q_\sigma'(x) \varphi_i(x) \varphi_j(x) \, d\sigma \right], \end{split}$$

здесь мы интеграл $\int_{0}^{\epsilon} p(x)u_{i}'(x,\tau)\varphi_{ix}'(x)\,dx$ проинтегрировали по частям,

воспользовались равенствами $\varphi_i(0) = \varphi_i(\ell) = 0$ (i = 1, 2, ..., N - 1), и перегруппировали слагаемые. Так как $u(x, \tau)$ решение математической модели (вспоминая определения матриц \widehat{A} и \widehat{B}), то

$$\sum_{i=1}^{N-1} \left(u_t'(x_i,\tau) - a_{it}'(\tau) \right) \left[\int_0^\ell f(x,\tau) \varphi_i(x) \, d\sigma - \sum_{j=1}^{N-1} \left(a_{jtt}''(\tau) \widehat{A}_{ij} + a_j(\tau_j(\tau) \widehat{B}_{ij}) \right],$$

но $a_j(\tau)$ — решение системы (4.1.2), поэтому, выражение в квадратных скобках равно нулю. Равенство (4.2.1) доказано.

Применяя теорему Фубини, левую часть (4.2.1) перепишем в виде

$$\int_{0}^{t} \int_{0}^{\ell} w_{tt}''(x,\tau) w_{t}'(x,\tau) M_{\sigma}'(x) \, d\sigma \, d\tau + \int_{0}^{t} \int_{0}^{\ell} p(x) w_{x}'(x,\tau) w_{tx}''(x,\tau) \, dx \, d\tau + \\ + \int_{0}^{t} \int_{0}^{\ell} Q_{\sigma}'(x) w(x,\tau) w_{t}'(x,\tau) \, d\sigma \, d\tau =$$

$$= \frac{1}{2} \int_{0}^{\ell} w_{t}^{\prime 2}(x,t) M_{\sigma}^{\prime}(x) d\sigma - \frac{1}{2} \int_{0}^{\ell} w_{t}^{\prime 2}(x,0) M_{\sigma}^{\prime}(x) d\sigma + + \frac{1}{2} \int_{0}^{\ell} p(x) w_{x}^{\prime 2}(x,t) dx - \frac{1}{2} \int_{0}^{\ell} p(x) w_{x}^{\prime 2}(x,0) dx + + \frac{1}{2} \int_{0}^{\ell} Q_{\sigma}^{\prime}(x) w^{2}(x,t) d\sigma - \frac{1}{2} \int_{0}^{\ell} Q_{\sigma}^{\prime}(x) w^{2}(x,0) d\sigma.$$

Тогда, из (4.2.1) вытекает равенство

$$\begin{split} &\int_{0}^{\ell} w_{t}^{\prime 2}(x,t) M_{\sigma}^{\prime}(x) \, d\sigma + \int_{0}^{\ell} p(x) w_{x}^{\prime 2}(x,t) \, dx + \int_{0}^{\ell} w^{2}(x,t) Q_{\sigma}^{\prime}(x) \, d\sigma = \\ &= \int_{0}^{\ell} w_{t}^{\prime 2}(x,0) M_{\sigma}^{\prime}(x) \, d\sigma + \int_{0}^{\ell} p(x) w_{x}^{\prime 2}(x,0) \, dx + \int_{0}^{\ell} w^{2}(x,0) Q_{\sigma}^{\prime}(x) \, d\sigma + \\ &\quad + 2 \int_{0}^{t} \int_{0}^{\ell} w_{tt}^{\prime \prime}(x,\tau) (u_{t}^{\prime}(x,\tau) - u_{It}^{\prime}(x,\tau) M_{\sigma}^{\prime}(x) \, d\sigma \, d\tau + \\ &\quad + 2 \int_{0}^{t} \int_{0}^{\ell} p(x) w_{x}^{\prime}(x,\tau) (u_{t}^{\prime}(x,\tau) - u_{It}^{\prime}(x,\tau))_{x}^{\prime} \, dx \, d\tau + \\ &\quad + 2 \int_{0}^{t} \int_{0}^{\ell} Q_{\sigma}^{\prime}(x) w(x,\tau) (u_{t}^{\prime}(x,\tau) - u_{It}^{\prime}(x,\tau)) \, d\sigma \, d\tau. \end{split}$$
(4.2.2)

После несложных преобразований, (4.2.2) принимает вид

$$\int_{0}^{\ell} w_{t}^{\prime^{2}}(x,t) M_{\sigma}^{\prime}(x) d\sigma + \int_{0}^{\ell} p(x) w_{x}^{\prime^{2}}(x,t) dx + \int_{0}^{\ell} w^{2}(x,t) Q_{\sigma}^{\prime}(x) d\sigma =$$

$$= \int_{0}^{\ell} w_{t}^{\prime^{2}}(x,0) M_{\sigma}^{\prime}(x) d\sigma + \int_{0}^{\ell} p(x) w_{x}^{\prime^{2}}(x,0) dx + \int_{0}^{\ell} w^{2}(x,0) Q_{\sigma}^{\prime}(x) d\sigma +$$

$$+ 2 \int_{0}^{\ell} w_{t}^{\prime}(x,t) (u_{t}^{\prime}(x,t) - u_{It}^{\prime}(x,t)) M_{\sigma}^{\prime}(x) d\sigma -$$

$$-2\int_{0}^{\ell} w_{t}'(x,0)(u_{t}'(x,0) - u_{I_{t}}'(x,0))M_{\sigma}'(x) d\sigma -$$

$$-2\int_{0}^{t}\int_{0}^{\ell} w_{t}'(x,\tau)(u_{t}'(x,\tau) - u_{I_{t}}'(x,\tau))_{t}'M_{\sigma}'(x) d\sigma d\tau +$$

$$+2\int_{0}^{t}\int_{0}^{\ell} p(x)w_{x}'(x,\tau)(u_{t}'(x,\tau) - u_{I_{t}}'(x,\tau))_{x}' dx d\tau +$$

$$+2\int_{0}^{t}\int_{0}^{\ell} Q_{\sigma}'(x)w(x,\tau)(u_{t}'(x,\tau) - u_{I_{t}}'(x,\tau)) d\sigma d\tau. \quad (4.2.3)$$

Оценим каждое слагаемое в правой части равенства (4.2.3). Для слагаемого $\int_{0}^{\ell} w_{t}'^{2}(x,0) M_{\sigma}'(x) \, d\sigma$ имеем

$$\begin{split} \left| \int_{0}^{\ell} w_{t}^{\prime^{2}}(x,0) M_{\sigma}^{\prime}(x) \, d\sigma \right| &= \\ &= \left| \int_{0}^{\ell} w_{t}^{\prime}(x,0) \left(\overline{\varphi}_{1}(x) - u_{I_{t}}^{\prime}(x,0) \right) M_{\sigma}^{\prime}(x) \, d\sigma + \\ &+ \int_{0}^{\ell} w_{t}^{\prime}(x,0) \left(u_{I_{t}}^{\prime}(x,0) - u_{N_{t}}^{\prime}(x,0) \right) M_{\sigma}^{\prime}(x) \, d\sigma \right| \leq \\ &\leq \left| \int_{0}^{\ell} w_{t}^{\prime}(x,0) \left(\overline{\varphi}_{1}(x) - \sum_{k=1}^{N-1} \overline{\varphi}_{1}(x_{k}) \varphi_{k}(x) \right) \, dM \right| + \\ &+ \left| \int_{0}^{\ell} w_{t}^{\prime}(x,0) \left(u_{I_{t}}^{\prime}(x,0) - u_{N_{t}}^{\prime}(x,0) \right) \, dM \right| \leq \\ &\leq \sqrt{\int_{0}^{\ell} w_{t}^{\prime^{2}}(x,0) \, dM} \cdot \sqrt{\int_{0}^{\ell} \left(\overline{\varphi}_{1}(x) - \sum_{k=1}^{N-1} \overline{\varphi}_{1}(x_{k}) \varphi_{k}(x) \right)^{2} \, dM} + \end{split}$$

$$+\sqrt{\int_{0}^{\ell} w_{t}^{\prime 2}(x,0) \, dM} \cdot \sqrt{\int_{0}^{\ell} (u_{I_{t}}(x,0) - u_{N_{t}}(x,0))^{2} \, dM}$$

(здесь мы применили теорему о замене [32] и неравенство Коши–Буняковского). Из последнего неравенства мы находим

$$\sqrt{\int_{0}^{\ell} w_{t}^{\prime 2}(x,0) \, dM} \leqslant \sqrt{\int_{0}^{\ell} \left(\overline{\varphi}_{1}(x) - \sum_{k=1}^{N-1} \overline{\varphi}_{1}(x_{k})\varphi_{k}(x)\right)^{2} \, dM} + \sqrt{\int_{0}^{\ell} \left(u_{I_{t}^{\prime}}(x,0) - u_{N_{t}^{\prime}}(x,0)\right)^{2} \, dM} \leqslant (C_{1}h + C_{2}h)\sqrt{M(\ell) - M(0)},$$

так как для абсолютно непрерывной функции $\overline{\varphi}_1(x)$, которая имеет производную с ограниченным изменением, при некоторой C_1 справедливо неравенство

$$\left|\overline{\varphi}_{1}(x) - \sum_{k=1}^{N-1} \overline{\varphi}_{1}(x_{k})\varphi_{k}(x)\right| \leqslant C_{1}h; \qquad (4.2.4)$$

вторая оценка справедлива ввиду цепочки

$$\begin{aligned} \left| \int_{0}^{\ell} \left(u_{I_{t}}'(x,0) - u_{N_{t}}'(x,0) \right)^{2} dM \right| &= \\ &= \left| \int_{0}^{\ell} \left(u_{I_{t}}'(x,0) - u_{N_{t}}'(x,0) \right) \left(u_{I_{t}}'(x,0) - u_{t}'(x,0) \right) dM \right| \leqslant \\ &\leqslant \sqrt{\int_{0}^{\ell} \left(u_{I_{t}}'(x,0) - u_{N_{t}}'(x,0) \right)^{2} dM} \cdot \sqrt{\int_{0}^{\ell} \left(u_{I_{t}}'(x,0) - u_{t}'(x,0) \right)^{2} dM} \leqslant \\ &\leqslant \sqrt{\int_{0}^{\ell} \left(u_{I_{t}}'(x,0) - u_{N_{t}}'(x,0) \right)^{2} dM} \cdot C^{*}h, \end{aligned}$$

откуда и вытекает требуемая оценка.

Оценим
$$\int_{0}^{\ell} w_{x}^{\prime^{2}}(x,0) dx.$$
 Имеем
$$\left| \int_{0}^{\ell} w_{x}^{\prime^{2}}(x,0) dx \right| = \\ = \left| \int_{0}^{\ell} w_{x}^{\prime}(x,0) \left(u_{x}^{\prime}(x,0) - u_{I_{x}}^{\prime}(x,0) + u_{I_{x}}^{\prime} - u_{N}^{\prime}(x,0) \right) dx \right| \leq \\ \leq \sqrt{\int_{0}^{\ell} w_{x}^{\prime^{2}}(x,0) dx} \cdot \sqrt{\int_{0}^{\ell} \left(u_{x}^{\prime}(x,0) - u_{I_{x}}^{\prime}(x,0) \right)^{2} dx} + \\ + \sqrt{\int_{0}^{\ell} w_{x}^{\prime^{2}}(x,0) dx} \cdot \sqrt{\int_{0}^{\ell} \left(u_{I_{x}}^{\prime}(x,0) - u_{N_{x}}^{\prime}(x,0) \right)^{2} dx}.$$

Отсюда получаем

$$\sqrt{\int_{0}^{\ell} w_{x}^{\prime 2}(x,0) \, dx} \leqslant \sqrt{\int_{0}^{\ell} (u_{x}^{\prime}(x,0) - u_{I_{x}^{\prime}}(x,0))^{2} \, dx} + \sqrt{\int_{0}^{\ell} (u_{I_{x}^{\prime}}(x,0) - u_{N_{x}^{\prime}}(x,0))^{2} \, dx} \quad (4.2.5)$$

Оценим второе слагаемое в правой части (4.2.5):

$$\left| \int_{0}^{\ell} \left(u_{I_{x}}'(x,0) - u_{N_{x}}'(x,0) \right)^{2} dx \right| = \\ = \left| \int_{0}^{\ell} \left(u_{I_{x}}'(x,0) - u_{N_{x}}'(x,0) \right) \left(u_{I_{x}}'(x,0) - u_{N_{x}}'(x,0) \right) dx \right| = \\ = \left| \int_{0}^{\ell} \left(u_{I_{x}}'(x,0) - u_{N_{x}}'(x,0) \right) \left(u_{I_{x}}'(x,0) - u_{X}'(x,0) \right) dx \right| \leq$$

$$\leqslant \sqrt{\int_{0}^{\ell} \left(u_{I_{x}'}(x,0) - u_{N_{x}'}(x,0)\right)^{2} dx} \cdot \sqrt{\int_{0}^{\ell} \left(u_{I_{x}'}(x,0) - u_{x}'(x,0)\right)^{2} dx}$$

(здесь мы воспользовались неравенством Коши–Буняковского). Из последнего неравенства следует

$$\sqrt{\int_{0}^{\ell} (u_{I_{x}'}(x,0) - u_{N_{x}'}(x,0))^{2} dx} \leq \sqrt{\int_{0}^{\ell} (u_{I_{x}'}(x,0) - u_{x}'(x,0))^{2} dx}$$

Тогда, (4.2.5) принимает вид

$$\sqrt{\int_{0}^{\ell} \left(w_{x}^{\prime 2}(x,0)\right)^{2} dx} \leq 2\sqrt{\int_{0}^{\ell} \left(u_{I_{x}^{\prime}}(x,0) - u_{x}^{\prime}(x,0)\right)^{2} dx}$$
(4.2.6)

Интеграл, стоящий под знаком корня в правой части (4.2.6), допускает оценку (применяя формулу интегрирования по частям):

$$\begin{aligned} \left| \int_{0}^{\ell} \left(u_{x}'(x,0) - u_{Ix}'(x,0) \right)^{2} dx \right| = \\ &= \left| \int_{0}^{\ell} \left(u_{x}'(x,0) - u_{Ix}'(x,0) \right) d \left(u(x,0) - u_{I}(x,0) \right) \right| = \\ &= \left| \left(u_{x}'(x,0) - u_{Ix}'(x,0) \right) \left(u(x,0) - u_{I}(x,0) \right) \right|_{0}^{\ell} - \\ &- \int_{0}^{\ell} \left(u(x,0) - u_{I}(x,0) \right) d \left(u_{x}'(x,0) - u_{Ix}'(x,0) \right) \right| = \\ &= \left| \int_{0}^{\ell} \left(\overline{\varphi}_{0}(x) - u_{I}(x,0) \right) d \left(\overline{\varphi}_{0}'(x) - u_{Ix}'(x,0) \right) \right|, \end{aligned}$$

так как $u(x,0) = \overline{\varphi}_0(x)$. Для удобства обозначим $x_0 = 0$ и $x_N = \ell$. Тогда

$$\left| \int_{0}^{\ell} \left(\overline{\varphi}_{0}(x) - u_{I}(x,0) \right) \, d\left(\overline{\varphi}_{0}'(x) - u_{Ix}'(x,0) \right) \right| =$$

$$= \left| \sum_{k=0}^{N-1} \int_{x_{k}+0}^{x_{k+1}-0} (\overline{\varphi}_{0}(x) - u_{I}(x,0)) d(\overline{\varphi}_{0}'(x)) + \right| \\ + \sum_{k=1}^{N-1} (\overline{\varphi}_{0}(x_{k}) - u_{I}(x_{k},0)) \Delta (\overline{\varphi}_{0}'(x_{k}) - u_{I}'_{x}(x_{k},0)) \right| = \\ = \left| \sum_{k=0}^{N-1} \int_{x_{k}+0}^{x_{k+1}-0} (\overline{\varphi}_{0}(x) - u_{I}(x,0)) d(\overline{\varphi}_{0}'(x)) \right| \leq \\ \leq \sum_{k=0}^{N-1} \max_{[x_{k};x_{k+1}]} \left| \overline{\varphi}_{0}(x) - u_{I}(x,0) \right| \bigvee_{x_{k}}^{x_{k+1}} (\overline{\varphi}_{0}'), \quad (4.2.7)$$

так как $\overline{\varphi}_0(x_k) - u_I(x_k, 0) = 0$ в силу того, что $u_I(x, t)$ — интерполянт и $u_{I'_x}(x_k, 0)$ константа на $(x_k; x_{k+1})$. Величину $\max_{[x_k; x_{k+1}]} |\overline{\varphi}_0(x) - u_I(x, 0)|$ мы можем оценить следующим образом (для всякого $x \in [x_k; x_{k+1}]$ $(k = 0, 1, \ldots, N - 1))$

$$\left|\overline{\varphi}_{0}(x) - u_{I}(x,0)\right| = \left|\overline{\varphi}_{0}(x) - \overline{\varphi}_{0}(x_{k}) - \frac{\overline{\varphi}_{0}(x_{k+1}) - \overline{\varphi}_{0}(x_{k})}{x_{k+1} - x_{k}}(x - x_{k})\right| = \left|\frac{1}{h}\int_{x_{k}}^{x_{k+1}}\int_{x_{k}}^{x}\left(\overline{\varphi}_{0}'(\tau) - \overline{\varphi}_{0}'(s)\right) d\tau ds\right| \leqslant \bigvee_{x_{k}}^{x_{k+1}}\left(\overline{\varphi}_{0}'\right) \cdot h \quad (4.2.8)$$

 $(h = h_{k+1} - h_k)$. Отсюда вытекает оценка

$$\max_{[x_k;x_{k+1}]} |\overline{\varphi}_0(x) - u_I(x,0)| \leqslant \bigvee_{x_k}^{x_{k+1}} (\overline{\varphi}'_0) \cdot h.$$
(4.2.9)

Тогда, (4.2.7), с учетом (4.2.9), мы можем переписать в виде

$$\left| \int_{0}^{\ell} \left(\overline{\varphi}_{0}(x) - u_{I}(x,0) \right) d\left(\overline{\varphi}_{0}'(x) - u_{I_{x}'}(x,0) \right) \right| \leq h \left(\bigvee_{0}^{\ell} \left(\overline{\varphi}_{0}' \right) \right)^{2}. \quad (4.2.10)$$

Интеграл $\int\limits_{0}^{\ell} w^2(x,0) \, dQ(x)$ допускает оценку

 $\left|\int\limits_0^\ell w^2(x,0)\,dQ(x)\right| =$

$$= \left| \int_{0}^{\ell} w(x,0) \left(u(x,0) - u_{I}(x,0) + u_{I}(x,0) - u_{N}(x,0) \right) dQ(x) \right| \leq \leq \sqrt{\int_{0}^{\ell} w^{2}(x,0) dQ(x)} \cdot \sqrt{\int_{0}^{\ell} \left(u(x,0) - u_{I}(x,0) \right)^{2} dQ(x)} + + \sqrt{\int_{0}^{\ell} w^{2}(x,0) dQ(x)} \cdot \sqrt{\int_{0}^{\ell} \left(u_{I}(x,0) - u_{N}(x,0) \right)^{2} dQ(x)},$$

отсюда находим

$$\sqrt{\int_{0}^{\ell} \int_{0}^{\ell} w^{2}(x,0) \, dQ(x)} \leq 2\sqrt{\int_{0}^{\ell} \int_{0}^{\ell} \left(u(x,0) - u_{I}(x,0)\right)^{2} \, dQ(x)}.$$

Интеграл в правой части последнего неравенства, на основании (4.2.9), оценивается сверху

$$\left| \int_{0}^{\ell} (u(x,0) - u_{I}(x,0))^{2} dQ(x) \right| = \\ = \left| \sum_{k=0}^{N-1} \int_{x_{k}+0}^{x_{k+1}-0} (u(x,0) - u_{I}(x,0))^{2} dQ(x) + \right. \\ \left. + \sum_{k=1}^{N-1} (u(x_{k},0) - u_{I}(x_{k},0))^{2} \Delta Q(x_{k}) \right| \leq \\ \leq \sum_{k=1}^{N-1} h^{2} \left(\bigvee_{x_{k}}^{x_{k+1}} (\overline{\varphi}_{0}') \right)^{2} \bigvee_{x_{k}}^{x_{k+1}} (Q) \leq h^{2} \left(\bigvee_{0}^{\ell} (\overline{\varphi}_{0}') \right)^{2} \bigvee_{0}^{\ell} (Q). \quad (4.2.11)$$

Остальных слагаемых в правой части (4.2.3) последовательно находим

$$A = \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,t) - u'_{I_{t}}(x,t) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{I_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{I_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{I_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{I_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{I_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{I_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{I_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{I_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{I_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{I_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{I_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{I_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{I_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{T_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{T_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{T_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{T_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{T_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{T_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{T_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{T_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{T_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{T_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{T_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{T_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{T_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{T_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left(u'_{t}(x,0) - u'_{T_{t}}(x,0) \right) dM \right| + \left| \int_{0}^{\ell} w'_{t}(x,t) \left| u'_{t}(x,t)$$

$$+ \int_{0}^{t} \left| \int_{0}^{\ell} w_{t}'(x,\tau) \left(u_{tt}''(x,\tau) - u_{It}''(x,\tau) \right) dM \right| d\tau + \\ + \int_{0}^{t} \left| \int_{0}^{\ell} w_{x}'(x,\tau) \left(u_{t}'(x,\tau) - u_{It}'(x,\tau) \right)_{x}' dQ \right| d\tau + \\ + \int_{0}^{t} \left| \int_{0}^{\ell} w_{t}(x,\tau) \left(u_{t}'(x,\tau) - u_{It}'(x,\tau) \right)_{x}' dQ \right| d\tau \leq \\ \leq \sqrt{\int_{0}^{\ell} w_{t}'^{2}(x,t) dM} \cdot \sqrt{\int_{0}^{\ell} \left(u_{t}'(x,t) - u_{It}'(x,t) \right)^{2} dM} + \\ + \sqrt{\int_{0}^{\ell} w_{t}'^{2}(x,\tau) dM} \cdot \sqrt{\int_{0}^{\ell} \left(u_{t}'(x,\tau) - u_{It}'(x,\tau) \right)^{2} dM} + \\ + \int_{0}^{t} \sqrt{\int_{0}^{\ell} w_{t}'^{2}(x,\tau) dM} \cdot \sqrt{\int_{0}^{\ell} \left(u_{t}'(x,\tau) - u_{It}'(x,\tau) \right)^{2} dM} d\tau + \\ + \int_{0}^{t} \sqrt{\int_{0}^{\ell} w_{x}'^{2}(x,\tau) dX} \cdot \sqrt{\int_{0}^{\ell} \left(u_{tx}'(x,\tau) - u_{It}'(x,\tau) \right)^{2} dX} d\tau + \\ + \int_{0}^{t} \sqrt{\int_{0}^{\ell} w^{2}(x,\tau) dQ} \cdot \sqrt{\int_{0}^{\ell} \left(u_{tx}'(x,\tau) - u_{It}'(x,\tau) \right)^{2} dQ} d\tau. \quad (4.2.12)$$

Второй сомножитель в каждом слагаемом в правой части последнего неравенства оценивается сверху величиной $C\sqrt{h}$ при некоторой постоянной C, не зависящей от h, в силу принадлежности u(x,t) — решения математической модели, классу E. Поэтому, (4.2.12) принимает вид

$$A \leqslant C\sqrt{h} \left(\sqrt{\int_{0}^{\ell} w_{t}^{\prime^{2}}(x,t) dM} + \sqrt{\int_{0}^{\ell} w_{t}^{\prime^{2}}(x,0) dM} + \right)$$

$$+ \int_{0}^{t} \left(\sqrt{\int_{0}^{\ell} w_{t}^{\prime^{2}}(x,\tau) \, dM} + \sqrt{\int_{0}^{\ell} w_{x}^{\prime^{2}}(x,\tau) \, dx} + \sqrt{\int_{0}^{\ell} w^{2}(x,\tau) \, dQ} \right) \, d\tau \right).$$
(4.2.13)

Теперь, из (4.2.3) мы получаем оценку

$$\max_{0 \leqslant t \leqslant T} \left(\int_{0}^{\ell} w_{t}^{\prime 2}(x,t) \, dM + \int_{0}^{\ell} w_{x}^{\prime 2}(x,t) \, dx + \int_{0}^{\ell} w^{2}(x,t) \, dQ \right)^{1/2} \leqslant \overline{C} \cdot \sqrt{h}, \quad (4.2.14)$$

где \overline{C} не зависит от h. Таким образом, доказана теорема.

Теорема 4.2.1. Пусть $M'_{\sigma}(x) > 0, \ Q'_{\sigma} \ge 0, \ p(x) > 0 \ u$ начальные условия $\overline{\varphi}_0(x) \ u \ \overline{\varphi}_1(x)$ таковы, что математическая модель

$$\begin{cases} M'_{\sigma}(x)\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial \sigma} \left(p(x)\frac{\partial u}{\partial x} \right) - u\frac{dQ}{d\sigma} + f(x,t), \\ u(0,t) = u(\ell,t) = 0, \\ u(x,0) = \overline{\varphi}_0(x), \\ u'_t(x,0) = \overline{\varphi}_1(x), \end{cases}$$
(4.2.15)

имеет единственное решение в классе E; u(x,t) и $u_N(x,t)$ — точное и приближенное, найденное с помощью адаптированного метода конечных элементов, решения. Тогда, справедливо неравенство (4.2.14).

4.3 Построение алгоритма для математической модели четвертого порядка

Приближенное решение $u_N(x,t)$ математической модели

$$\begin{cases} M'_{\sigma}(x)\frac{\partial^2 u}{\partial t^2} = -\frac{\partial}{\partial \sigma}\frac{\partial}{\partial x}\left(p(x)\frac{\partial^2 u}{\partial x^2}\right) + \frac{\partial}{\partial \sigma}\left(r(x)\frac{\partial u}{\partial x}\right) - u\frac{dQ}{d\sigma} + f(x,t),\\ u(0,t) = u''_{x\mu}(0,t) = u''_{x\mu}(\ell,t) = u(\ell,t) = 0,\\ u(x,0) = \overline{\varphi}_0(x),\\ u'_t(x,0) = \overline{\varphi}_1(x), \end{cases}$$

$$(4.3.1)$$

будем искать в виде

$$u_N(x,t) = \sum_{k=1}^{N-1} a_{2k-1}(t)\varphi_{2k-1}(x) + \sum_{k=0}^{N} a_{2k}(t)\varphi_{2k}(x),$$

где $a_k(t)$ — неизвестные дважды непрерывно дифференцируемые функции, $\varphi_k(x)$ — базисные функции, определяемые следующим образом. Отрезок $[0; \ell]$ разобьем на N равных (для удобства) частей, и

$$\varphi_{2k-1}(x) = \begin{cases} 1 - 3\left(\frac{x - x_k}{h}\right)^2 - 2\left(\frac{x - x_k}{h}\right)^3, & \text{для} \quad x \in [x_k - h, x_k] \\ 1 - 3\left(\frac{x - x_k}{h}\right)^2 + 2\left(\frac{x - x_k}{h}\right)^3, & \text{для} \quad x \in [x_k, x_k + h] \\ 0, & \text{для} \quad \text{остальных } x. \end{cases}$$

$$\varphi_{2k}(x) = \begin{cases} (x - x_k) \left(1 + \frac{x - x_k}{h} \right)^2, & \text{для} \quad x \in [x_k - h, x_k] \\ (x - x_k) \left(1 - \frac{x - x_k}{h} \right)^2, & \text{для} \quad x \in [x_k, x_k + h] \\ 0, & \text{для} \quad \text{остальных } x. \end{cases}$$

здесь $x_k = k \frac{\ell}{N}, \ k = 0, 1, 2, \dots, N$. Количество базисных функций объясняется тем, что оба условия $u(0, \ell) = u(\ell, t) = 0$, которым должны удовлетворять базисные функции, являются главными.

Уравнение в (4.3.1) умножим на базисную функцию $\varphi_n(x)$ ($n = 0, 1, 2, \ldots, 2N - 3, 2N - 2, 2N$), и проинтегрируем по мере σ по $[0; \ell]$:

$$\int_{0}^{\ell} M'_{\sigma}(x) u''_{tt}(x,t) \varphi_n(x) \, d\sigma =$$

$$= -\int_{0}^{\ell} (p(x)u''_{xx}(x,t))''_{x\sigma}\varphi_n(x)\,d\sigma + \int_{0}^{\ell} (r(x)u'_x)'_{\sigma}\varphi_n\,d\sigma - \int_{0}^{\ell} u(x,t)\varphi_n(x)Q'_{\sigma}(x)\,d\sigma + \int_{0}^{\ell} f(x,t)\varphi_n(x)\,d\sigma.$$

Проинтегрируем интеграл $\int_{0}^{\ell} (p(x)u''_{xx}(x,t))''_{x\sigma} \varphi_n(x) d\sigma$ дважды по ча-стям, интеграл $\int_{0}^{\ell} (r(x)u'_x)'_{\sigma} \varphi_n d\sigma$ один раз проинтегрируем по частям, и

воспользовавшись граничными условиями (которым удовлетворяют базисные функции и решение u(x,t)), будем иметь

$$\int_{0}^{\ell} M'_{\sigma}(x) u_{tt}''(x,t) \varphi_n(x) \, d\sigma + \int_{0}^{\ell} p(x) u_{xx}''(x,t) \varphi_{nxx}''(x) \, dx + \\ + \int_{0}^{\ell} r(x) u_x' \varphi_{nx}' \, dx + \int_{0}^{\ell} u(x,t) \varphi_n(x) Q_{\sigma}'(x) \, d\sigma = \int_{0}^{\ell} f(x,t) \varphi_n(x) \, d\sigma.$$

Подставляя $u_N(x,t)$ в последнее равенство, получим

$$\sum_{k \in I} a_k''(t) \int_0^\ell \varphi_k(x) \varphi_n(x) \, dM(x) + \sum_{k \in I} a_k(t) \int_0^\ell p(x) \varphi_{kxx}''(x) \varphi_{nxx}''(x) \, dx + \sum_{k \in I} \int_0^\ell r(x) \varphi_{kx}'(x) \varphi_{nxx}'(x) \, dx + \sum_{k \in I} a_k(t) \int_0^\ell \varphi_k(x) \varphi_n(x) \, dQ(x) = \int_0^\ell f(x,t) \varphi_n(x) \, d\sigma$$

 $(I = \{0, 1, 2, \dots, 2N-3, 2N-2, 2N\}, n \in I)$. Таким образом, мы получаем систему линейных обыкновенных дифференциальных уравнений

$$\widehat{A}a''(t) + \widehat{B}a = \widehat{F}, \qquad (4.3.2)$$

где \widehat{A}
и \widehat{B} — квадратные матрицы порядка 2N, коэффициенты которых находятся по формулам

$$\widehat{A}_{kn} = \widehat{A}_{nk} = \int_{0}^{\ell} \varphi_k(x) \varphi_n(x) \, dM(x),$$

$$\widehat{B}_{kn} = \widehat{B}_{nk} = \int_{0}^{\ell} p(x)\varphi_{kxx}''(x)\varphi_{nxx}''(x) dx + \int_{0}^{\ell} r(x)\varphi_{kx}'(x)\varphi_{nx}'(x) dx + \int_{0}^{\ell} \varphi_{k}(x)\varphi_{n}(x) dQ(x),$$

 $a(t) = (a_0(t), a_1(t), a_2(t), \dots, a_{2N-2}(t), a_{2N}(t))^T$ и $\widehat{F}(t) = (F_0(t), F_1(t), F_2(t), \dots, F_{2N-2}(t), F_{2N}(t))^T$ — вектор-столбцы, компоненты $F_n(t)$ определяются равенствами

$$F_n(t) = \int_0^\ell f(x,t)\varphi_n(x)\,d\sigma.$$

Умножим каждое начальное условие $u(x, 0) = \overline{\varphi}_0(x)$ и $u'_t(x, 0) = \overline{\varphi}_1(x)$ на базисную функцию $\varphi_n(x)$, проинтегрируем по M(x) в пределах от 0 до ℓ , подставим вместо u(x, t) функцию $u_N(x, t)$:

$$\sum_{k \in I} a_k(0) \int_0^\ell \varphi_k(x) \varphi_n(x) \, dM = \int_0^\ell \overline{\varphi}_0(x) \varphi_n(x) \, dM,$$
$$\sum_{k \in I} a'_k(0) \int_0^\ell \varphi_k(x) \varphi_n(x) \, dM = \int_0^\ell \overline{\varphi}_1(x) \varphi_n(x) \, dM,$$

или, в матричном виде,

$$\widehat{C}a(0) = H_1, \quad \widehat{C}a'(0) = H_2,$$
(4.3.3)

где $\widehat{C}-$ квадратная матрица с коэффициентами

$$\widehat{C}_{kn} = \widehat{C}_{nk} = \int_{0}^{\ell} \varphi_k(x)\varphi_n(x) \, dM,$$

 H_1 и H_2 — вектор-столбцы с координатами (j = 1, 2)

$$(H_j)_n = \int_0^\ell \overline{\varphi}_{j-1}(x)\varphi_n(x) \, dM.$$

Матрицы \widehat{A} и \widehat{C} являются матрицами Грамма системы $\{\varphi_k(x)\}_{k\in I}$ линейно независимых функций. Поэтому \widehat{A} и \widehat{C} имеют обратные. Тогда, (4.3.2) и (4.3.3) принимают вид

$$a''(t) + \widehat{A}^{-1}\widehat{B}a = \widehat{A}^{-1}\widehat{F},$$
 (4.3.4)

$$a(0) = \widehat{C}^{-1}H_1, \quad a'(0) = \widehat{C}^{-1}H_2.$$
 (4.3.5)

В классической теории обыкновенных дифференциальных уравнений доказывается, что (4.3.4), дополненная начальными условиями (4.3.5), имеет единственное решение.

Для численного решения (4.3.4), (4.3.5) применим явную схему (τ — шаг по временной переменной). Для реализации алгоритма имеем следующие формулы

$$\frac{a_k((j+1)\tau) - 2a_k(j\tau) + a_k((j-1)\tau)}{\tau^2} + \sum_{i \in I} \eta_{k,i} a_i(j\tau) = F_k(j\tau), k \in I,$$

где $\eta_{k,n}$ — коэффициенты матрицы $\widehat{A}^{-1}\widehat{B}$. Два начальных слоя мы найдем используя начальные данные:

$$a_k(0) = \left(\widehat{C}^{-1}H_1\right)_k, \frac{a_k(\tau) - a_k(0)}{\tau} = \left(\widehat{C}^{-1}H_2\right)_k.$$

4.4 Оценка скорости сходимости

Обозначим $w(x,t) = u(x,t) - u_N(x,t)$ и

$$u_I(x,t) = \sum_{k=1}^{N-1} u(x_k,t)\varphi_{2k-1}(x) + \sum_{k=0}^N u'_x(x_k,t)\varphi_{2k}(x).$$

Для всех $t \in [0;T]$ справедливы тождества

$$\int_{0}^{\ell} w_{tt}''(x,t) M_{\sigma}'(x) \varphi_{n}(x) d\sigma + \int_{0}^{\ell} p(x) w_{xx}''(x,t) \varphi_{nxx}''(x) dx + \int_{0}^{\ell} r(x) w_{x}'(x,t) \varphi_{nn}'(x) dx + \int_{0}^{\ell} w(x,t) \varphi_{n}(x) Q_{\sigma}'(x) d\sigma \equiv 0 \quad (n \in I),$$
$$\int_{0}^{\ell} w_{t}'(x,0) \varphi_{n}(x) dM = 0, \quad \int_{0}^{\ell} w(x,0) \varphi_{n}(x) dM = 0,$$

И

$$\begin{split} \int_{0}^{t} \int_{0}^{\ell} w_{tt}''(x,\tau) w_{t}'(x,\tau) M_{\sigma}'(x) \, d\sigma \, d\tau + \int_{0}^{t} \int_{0}^{\ell} p(x) w_{xx}''(x,\tau) w_{txx}''(x,\tau) \, dx \, d\tau + \\ + \int_{0}^{t} r(x) w_{x}'(x,tau) w_{tx}''(x,\tau) \, dx \, d\tau + \int_{0}^{t} \int_{0}^{\ell} Q_{\sigma}'(x) w(x,\tau) w_{t}'(x,\tau) \, d\sigma \, d\tau \equiv \\ &\equiv \int_{0}^{t} \int_{0}^{\ell} w_{tt}''(x,\tau) (u_{t}'(x,\tau) - u_{I_{t}}'(x,\tau)) M_{\sigma}'(x) \, d\sigma \, d\tau + \\ + \int_{0}^{t} \int_{0}^{\ell} p(x) w_{xx}''(x,\tau) (u_{t}'(x,\tau) - u_{I_{t}}'(x,\tau)) w_{xx}''(x,\tau) \, dx \, d\tau + \\ + \int_{0}^{t} \int_{0}^{\ell} r(x) w_{xx}'(x,\tau) (u_{t}'(x,\tau) - u_{I_{t}}'(x,\tau)) w_{xx}''(x,\tau) \, d\sigma \, d\tau + \\ + \int_{0}^{t} \int_{0}^{\ell} p(x) w_{xx}''(x,\tau) (u_{t}'(x,\tau) - u_{I_{t}}'(x,\tau)) w_{xx}''(x,\tau) \, d\tau + \\ + \int_{0}^{t} \int_{0}^{\ell} Q_{\sigma}'(x) w(x,\tau) (u_{t}'(x,\tau) - u_{I_{t}}'(x,\tau)) \, d\sigma \, d\tau. \tag{4.4.1}$$

Доказательство (4.4.1) проводится аналогично (4.2.1).

Применяя теорему Фубини, левую часть (4.4.1) перепишем в виде

$$\begin{split} \int_{0}^{t} \int_{0}^{\ell} w_{tt}''(x,\tau) w_{t}'(x,\tau) M_{\sigma}'(x) \, d\sigma \, d\tau + \int_{0}^{t} \int_{0}^{\ell} p(x) w_{xx}''(x,\tau) w_{txx}''(x,\tau) \, dx \, d\tau + \\ &+ \int_{0}^{t} \int_{0}^{\ell} r(x) w_{x}'(x,\tau) w_{tx}''(x,\tau) \, dx \, d\tau + \int_{0}^{t} \int_{0}^{\ell} Q_{\sigma}'(x) w(x,\tau) w_{t}'(x,\tau) \, d\sigma \, d\tau = \\ &= \frac{1}{2} \int_{0}^{\ell} w_{t}'^{2}(x,t) M_{\sigma}'(x) \, d\sigma - \frac{1}{2} \int_{0}^{\ell} w_{t}'^{2}(x,0) M_{\sigma}'(x) \, d\sigma + \\ &+ \frac{1}{2} \int_{0}^{\ell} p(x) w_{xx}''^{2}(x,t) \, dx - \frac{1}{2} \int_{0}^{\ell} p(x) w_{xx}''^{2}(x,0) \, dx + \\ &\quad \frac{1}{2} \int_{0}^{\ell} r(x) w_{x}'^{2}(x,t) \, dx - \frac{1}{2} \int_{0}^{\ell} r(x) w_{x}'^{2}(x,0) \, dx + \\ &\quad + \frac{1}{2} \int_{0}^{\ell} Q_{\sigma}'(x) w^{2}(x,t) \, d\sigma - \frac{1}{2} \int_{0}^{\ell} Q_{\sigma}'(x) w^{2}(x,0) \, d\sigma. \end{split}$$

Тогда, из (4.4.1) вытекает равенство

$$\begin{split} \int_{0}^{\ell} w_{t}^{\prime 2}(x,t) M_{\sigma}^{\prime}(x) \, d\sigma &+ \int_{0}^{\ell} p(x) w_{xx}^{\prime \prime 2}(x,t) \, dx + \\ &+ \int_{0}^{\ell} r(x) w_{x}^{\prime 2}(x,t) \, dx + \int_{0}^{\ell} w^{2}(x,t) Q_{\sigma}^{\prime}(x) \, d\sigma = \\ &= \int_{0}^{\ell} w_{t}^{\prime 2}(x,0) M_{\sigma}^{\prime}(x) \, d\sigma + \int_{0}^{\ell} p(x) w_{xx}^{\prime \prime 2}(x,0) \, dx + \\ &+ \int_{0}^{\ell} r(x) w_{x}^{\prime 2}(x,0) \, dx + \int_{0}^{\ell} w^{2}(x,0) Q_{\sigma}^{\prime}(x) \, d\sigma + \\ &+ 2 \int_{0}^{t} \int_{0}^{\ell} w_{tt}^{\prime \prime}(x,\tau) (u_{t}^{\prime}(x,\tau) - u_{It}^{\prime}(x,\tau) M_{\sigma}^{\prime}(x) \, d\sigma \, d\tau + \end{split}$$

$$+ 2 \int_{0}^{t} \int_{0}^{\ell} p(x) w_{xx}''(x,\tau) \left(u_{t}'(x,\tau) - u_{I_{t}}'(x,\tau) \right)_{xx}'' dx d\tau + + 2 \int_{0}^{t} \int_{0}^{\ell} r(x) w_{x}'(x,\tau) \left(u_{t}'(x,\tau) - u_{I_{t}}'(x,\tau) \right)_{x}' dx d\tau + + 2 \int_{0}^{t} \int_{0}^{\ell} Q_{\sigma}'(x) w(x,\tau) \left(u_{t}'(x,\tau) - u_{I_{t}}'(x,\tau) \right) d\sigma d\tau.$$
(4.4.2)

После несложных преобразований, (4.4.2) принимает вид

$$\begin{split} \int_{0}^{\ell} w_{t}^{\prime^{2}}(x,t) M_{\sigma}^{\prime}(x) \, d\sigma &+ \int_{0}^{\ell} p(x) w_{xx}^{\prime\prime^{2}}(x,t) \, dx + \\ &+ \int_{0}^{\ell} r(x) w_{x}^{\prime^{2}}(x,t) \, dx + \int_{0}^{\ell} w^{2}(x,t) Q_{\sigma}^{\prime}(x) \, d\sigma = \\ &= \int_{0}^{\ell} w_{t}^{\prime^{2}}(x,0) M_{\sigma}^{\prime}(x) \, d\sigma + \int_{0}^{\ell} p(x) w_{xx}^{\prime\prime^{2}}(x,0) \, dx + \\ &\int_{0}^{\ell} r(x) w_{x}^{\prime^{2}}(x,0) \, dx + \int_{0}^{\ell} w^{2}(x,0) Q_{\sigma}^{\prime}(x) \, d\sigma + \\ &+ 2 \int_{0}^{\ell} w_{t}^{\prime}(x,t) (u_{t}^{\prime}(x,t) - u_{It}^{\prime}(x,t)) M_{\sigma}^{\prime}(x) \, d\sigma - \\ &- 2 \int_{0}^{\ell} \int_{0}^{\ell} w_{t}^{\prime}(x,0) (u_{t}^{\prime}(x,0) - u_{It}^{\prime}(x,0)) M_{\sigma}^{\prime}(x) \, d\sigma d\tau + \\ &+ 2 \int_{0}^{t} \int_{0}^{\ell} p(x) w_{xx}^{\prime\prime}(x,\tau) (u_{t}^{\prime}(x,\tau) - u_{It}^{\prime}(x,\tau))_{xx}^{\prime\prime} \, dx \, d\tau + \end{split}$$

$$+ 2 \int_{0}^{t} \int_{0}^{\ell} r(x) w'_{x}(x,\tau) \left(u'_{t}(x,\tau) - u'_{It}(x,\tau) \right)'_{x} dx d\tau + + 2 \int_{0}^{t} \int_{0}^{\ell} Q'_{\sigma}(x) w(x,\tau) \left(u'_{t}(x,\tau) - u'_{It}(x,\tau) \right) d\sigma d\tau. \quad (4.4.3)$$

Проводя рассуждения, аналогичные проведенным в параграфе 4.2, мы получим оценку

$$\max_{0 \leqslant t \leqslant T} \left(\int_{0}^{\ell} w_{t}^{\prime^{2}}(x,t) \, dM + \int_{0}^{\ell} p(x) w_{xx}^{\prime\prime^{2}}(x,t) \, dx + \int_{0}^{\ell} r(x) w_{x}^{\prime^{2}}(x,t) \, dx + \int_{0}^{\ell} w^{2}(x,t) \, dQ \right)^{1/2} \leqslant \overline{C} \cdot h, \quad (4.4.4)$$

где \overline{C} не зависит от h. Таким образом, доказана теорема.

Теорема 4.4.1. Пусть $M'_{\sigma}(x) > 0, Q'_{\sigma} \ge 0, p(x) > 0, r(x) \ge 0$ и начальные условия $\overline{\varphi}_0(x)$ и $\overline{\varphi}_1(x)$ таковы, что математическая модель

$$\begin{pmatrix}
M'_{\sigma}(x)\frac{\partial^2 u}{\partial t^2} = -\frac{\partial}{\partial\sigma}\frac{\partial}{\partial x}\left(p(x)\frac{\partial^2 u}{\partial x^2}\right) + \frac{\partial}{\partial\sigma}\left(r(x)\frac{\partial u}{\partial x}\right) - u\frac{dQ}{d\sigma} + f(x,t), \\
u(0,t) = u''_{x\mu}(0,t) = u''_{x\mu}(\ell,t) = u(\ell,t) = 0, \\
u(x,0) = \overline{\varphi}_0(x), \\
u'_t(x,0) = \overline{\varphi}_1(x),
\end{cases}$$
(4.4.5)

имеет единственное решение в классе E; u(x,t) и $u_N(x,t)$ — точное и приближенное, найденное с помощью адаптированного метода конечных элементов, решения. Тогда, справедливо неравенство (4.4.4).

4.5 Численные эксперименты

В этом параграфе приводятся численные эксперименты, проведенные с помощью программ написанных на языке программирования Python.

4.5.1 Первый пример

Рассмотрим математическую модель

$$\begin{cases} M'_{\sigma}(x)\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial \sigma}\left(p(x)\frac{\partial u}{\partial x}\right) - u\frac{dQ}{d\sigma} + f(x,t),\\ u(0,t) = u(\ell,t) = 0,\\ u(x,0) = \varphi_0(x),\\ u'_t(x,0) = \varphi_1(x), \end{cases}$$

при следующих параметрах: $\xi_1 = 0, 1, \xi_2 = 0, 45, \xi_3 = 0, .9,$

$$M'_{\sigma}(x) = \begin{cases} 2\pi & \text{если } x \neq \xi_i, \\ 5, & \text{если } x = \xi_1, \\ 3, & \text{если } x = \xi_2, \\ 0, & \text{если } x = \xi_3, \end{cases}$$

 $p(x)\equiv 1,\,Q_{\sigma}'(x)=0,$ если $x\neq\xi_2,\,Q_{\sigma}'(\xi_2)=1,\,f(x,t)\equiv=0,$ и начальных данных

Рис. 4.1: Форма струны при различных значениях времени t = 0; 0, 04; 0, 08; 0, 12

$$\varphi_0(x) = \begin{cases} ((0,2-x) \cdot (x-0,7))^2, & \text{если } x \in [0,2;0,7] \\ 0, & x \notin [0,2;0,7], \end{cases}$$

и нулевой начальной скорости.

Результат работы программы Mon.1.3.0.ру представлен на рисунках 4.1–4.4.

Рис. 4.2: Форма струны при различных значениях времени t = 0,16; 0,20; 0,24; 0,28

Рис. 4.3: Форма струны при различных значениях времени t = 0,32; 0,36; 0,40; 0,44

Рис. 4.4: Форма струны при различных значениях времени t = 0,48; 0,52; 0,56; 0,60

Значения приближенного решения при различных x и t, представлены в приложении A.2.

4.5.2 Второй эксперимент

Рассмотрим ту же модель, но при других параметрах, а именно: начальные условия нулевые; $\xi_1 = 0,2, \ \xi_2 = 0,5, \ \xi_3 = 0,8, \ \xi_4 = 0,9;$ $M'_{\sigma}(x) = 1, \ \text{если} \ x \neq \xi_i, \ M'_{\sigma}(\xi_1) = 5,0, \ M'_{\sigma}(\xi_1) = 3,0, \ M'_{\sigma}(\xi_1) = 4,0,$ $M'_{\sigma}(\xi_1) = 1,0; \ p(x) = 1/\pi; \ Q'_{\sigma}(x) = 0, \ \text{если} \ x \neq \xi_2, \ \text{и} \ Q'_{\sigma}(\xi) = 1,2;$ $f(x,t) = \sin(\pi t) \cdot \sin(\pi x), \ \text{если} \ x \neq \xi_i, \ \text{и}$ нулю во всех остальных случаях.

Результат работы программы Mon.1.3.0.ру представлен на рисунках 4.5–4.12.

Значения приближенного решения при различных x и t, представлены в приложении А.3.

4.6 Комплекс программ для реализации численных экспериментов

Здесь приводится описание комплекса программ, написанных на Python, для нахождения приближенного решения.

Программа работает по следующему алгоритму. Задаются коэффициенты модели. Затем находятся коэффициенты системы, которая со-

Рис. 4.5: График приближенного решения при *t* = 0,00; 0,03; 0,06; 0,09

Рис. 4.7: График приближенного решения при *t* = 0,24; 0,27; 0,30; 0,33

Рис. 4.6: График приближенного решения при *t* = 0,12; 0,15; 0,18; 0,21

Рис. 4.8: График приближенного решения при *t* = 0,36; 0,39; 0,42; 0,45

ставляется при реализации адаптированного метода конечных элементов. Потом полученная система решается, и получается приближенное решение. Строится либо график, либо таблица значений.

Схема взаимодействия модулей скрипта довольно проста, и представлена на рисунке 4.13.

Алгоритм программного комплекса представлена на рисунке 4.14.

Алгоритм для проведения расчетов состоит из следующих шагов:

- 1. Задание коэффициентов модели.
- 2. Задание шага τ и количества шагов k по времени.
- 3. Нахождение двух начальных слоев; матриц A и B.
- 4. Вычисление правой части $F(\tau_i)$.
- 5. Решение системы $A\ddot{a}(\tau_j) = F(\tau_j) Ba(\tau_j).$
- 6. Нахождение следующего слоя.
- 7. Увеличение счетчика j и значения τ_{j} .
- 8. Если $j \leq k$, то перейти к пункту 4.

Рис. 4.9: График приближенного решения при t = 0.48; 0.51; 0.54; 0.57

Рис. 4.10: График приближенного решения при *t* = 0,60; 0,63; 0,66; 0,69

Рис. 4.11: График приближенного решения при *t* = 0,72; 0,75; 0,78; 0,81

Рис. 4.12: График приближенного решения при *t* = 0,84; 0,87; 0,90; 0,93

Описание программы для нахождения приближенного решения.

Общие сведения о программе.

Программа называется Mon.1.3.0.ру.

Для работы программы необходим интерпретатор языка Python, пакеты math, scipy.integrate, copy, pylab и matplotlib. Для нормальной работы программы необходимо порядка 1 ГБ оперативной памяти. Объем исходного текста составляет 7547 bytes.

Функциональное назначение. Предназначена для нахождения

Рис. 4.13: Схема взаимодействия модулей

Рис. 4.14: Алгоритм программного комплекса

приближенного решения модели малых колебаний струны по заданных параметрам модели.

Структура программы. В модуле, с названием DANNIE2.py, задаются параметры модели. Из консоли запускается скрипт Mon.1.3.0.py, который спрашивает шаг по времени и количество шагов, и необходимое действие (построить график приближенного решения или записать значения приближенного решения в текстовый файл). Далее вычисляются коэффициенты линейной системы и решается. Осуществляется выбранное действие.

Требования к программному окружению. Операционная система Linux, Windows XP, 2003, 7.

Эксплуатация программы. До запуска программы необходимо задать параметры модели: M(x), p(x), q(x), f(x,t), ξ_i , которые необходимо ввести в файл с именем DANNIE2.py, и другие параметры, которые вводятся с клавиатуры. На выходе будет получен либо график приближенного решения модели, либо таблица приближенного решения, которая может быть записана в файл. После задания параметров достаточно запустить скрипт с именем Mon.1.3.0.py.

На выходе будет получен график приближенного решения модели.

Текст программы представлен в приложении А.1.
Заключение

В диссертационной работе представлены новые качественные и приближенные аналитические методы исследования математических моделей, описывающие малые колебания струнных и стержневых систем. Современный аналитический аппарат изучения таких моделей находится в начальной стадии формирования. Полученные качественные аналитические методы исследования основываются на эффективных результатах анализа граничных задач с производными Радона–Никодима. В настоящее время численные методы для уравнений с производными по мере, их обоснование также находятся в стадии формирования. В работе получены новые результаты, относящиеся к области приближенного решения смешанных задач с производными Радона–Никодима, а также дана оценка погрешности. Представлены комплексы проблемно-ориентированных программ для проведения вычислительного эксперимента.

Основные результаты диссертационного исследования заключаются в следующем.

1. Вариационное обоснование математических моделей, описывающих малые колебания систем, состоящих из стержней и струн, имеющих внутренние особенности, которые приводят к потере гладкости решения модели.

2. Доказательство корректности полученных математических моделей.

3. Разработка эффективных численных методов решения граничных задач для уравнений второго и четвертого порядков (методы построения аналогов метода конечных элементов для математических моделей и оценка близости приближенного решения к точному решению).

4. Разработка эффективных алгоритмов решения негладких граничных задач, а также разработка комплексов программ для ЭВМ с проведением вычислительных экспериментов на тестовых задачах.

Литература

- [1] Аткинсон Ф. Дискретные и непрерывные граничные задачи / Ф. Аткинсон. — М. : Мир, 1968. — 749 с.
- [2] Баев А.Д. О единственности классического решения математической модели вынужденных колебаний стержневой системы с особенностями / А.Д. Баев, С.А. Шабров, Ф.В. Голованёва, Меач Мон // Вестн. Воронеж. гос. ун–та. Сер. Физика, математика. — 2014. — № 2. — С. 57–63.
- [3] Баев А.Д. О единственности решения математической модели вынужденных колебаний струны с особенностями / А.Д. Баев, С.А. Шабров, Меач Мон // Вестн. Воронеж. гос. ун–та. Сер. Физика, математика. — 2014. — № 1. — С. 50–55.
- [4] Меач Мон. О функции влияния одной дифференциальной модели четвертого порядка / Меач Мон, С.А. Шабров // Современные методы теории краевых задач. Материалы ВВМШ «Понтрягинские чтения — XXIV» (доп.вып.). — Воронеж, 2014. — С. 6–7.
- [5] Бахвалов Н.С. Об уравнениях высокого порядка точности, описывающих колебания тонких стержней / Н.С. Бахвалов, М.Э. Эглит // Журнал вычислительной математики и математической физики. — 2006. — Т. 46, № 3. — С. 457–472.
- [6] Боровских А.В. Об одном классе дифференциальных уравнений на пространственной сети / А.В. Боровских, Р. Мустафокулов, К.П. Лазарев, Ю.В. Покорный // Доклады РАН. — 1995. — Т. 345, №6. — С. 730–732.
- [7] Вагабов А.И. Задача о колебании конечной струны с нелинейным возмущением / А.И. Вагабов Известия высших учебных заведений. Математика. 1999. № 3. С. 17-21.
- [8] Владимиров А.А. О накоплении собственных значений операторного пучка, связанного с задачей о колебаниях вязкоупругого стержня /

А.А. Владимиров // Математические заметки. — 2006. — Т. 79, № 3. — С. 369–383.

- [9] Гохберг И.Ц., Крейн М.Г. Теория вольтерровых операторов в гильбертовом пространстве и её приложения. — М. — 1967. — 508с.
- [10] Демьянов Ю.А. К теории поперечно-продольных колебаний предварительно напряженных балок и стержней / Ю.А. Демьянов // Доклады Академии наук. — 2005. — Т. 401, № 4. — С. 476–478.
- [11] Дерр В.Я. Дифференциальные уравнения с обобщёнными функциями, допускающими умножение на разрывные функции / В.Я. Дерр, Д.М. Кинзебулатов // Вестн. Удмуртского ун-та. Математика. Механика. — Ижевск, 2005. — №1. — С. 35–58.
- [12] Дерр В.Я. К определению решения линейного дифференциального уравнения с обобщёнными функциями в коэффициентах / Дерр В.Я. // Докл. АН СССР. — 1988. — Т. 298, № 2. — С. 269–272.
- [13] Дерр В.Я. Обыкновенные дифференциальные уравнения с обобщёнными функциями в пространстве *T'* / В.Я. Дерр, Д.М. Кинзебулатов // Известия института математики и информатики. — Ижевск, 2006. — Вып. 3(37). — С. 29–30.
- [14] Дифференциальные уравнения на геометрических графах / Покорный Ю. В., Пенкин О. М., Прядиев В. Л., Боровских А. В., Лазарев К. П., Шабров С. А. — М.: Физматлит, 2004. — 272с.
- [15] Завалищин С.Т. Импульсные процессы: модели и приложения / С.Т. Завалищин, А.Н. Сесекин. М. : Наука, 1991. 255 с.
- [16] Зверева М.Б. Об адаптации метода конечных элементов для решения граничной задачи с дифференциалами стилтьеса на геометрическом графе / М.Б. Зверева, С.А. Шабров, Е.В. Лылов // Вестник Воронежского государственного университета. Серия: Физика. Математика. — 2014. — № 1. — С. 97-105.
- [17] Знаменская Л.Н. Управляемость колебаниями струны с одним закрепленным концом при ограничениях на управление / Л.Н. Знаменская // Дифференциальные уравнения. — 2003. — Т. 39, № 3. — С. 377–382.

- [18] Кобзев Г.К. Приближенное решение задачи управления колебаниями вязкоупругой струны; первая краевая задача / Г.К. Кобзев // Вестник Иркутского государственного технического университета. — 2006. — Т. 27, № 3. — С. 62–66.
- [19] Крейн С.Г. Линейные операторы, оставляющие инвариантным конус в пространстве Банаха / С.Г. Крейн, М.А. Рутман // Успехи матем. наук. — 1948. — Т. 3, № 1. — С. 3–95.
- [20] Курант Р. Методы математической физики. Т. 1 / Р. Курант, Д. Гильберт ; пер. со 2-го нем. изд. З. Либина, Б. Лившица, Ю. Рабиновича. — 3-е изд., исправ. — М. ; Л. : Гос. изд-во технико-теорет. лит-ры, 1951. — 476 с.
- [21] Люстерник Л.А. Элементы функционального анализа / Л.А. Люстерник, В.И. Соболев. — М. : Наука, 1968. — 519 с.
- [22] Малашин А.А. Вынужденные продольные колебания гибких деформируемых предварительно натянутых струн на частотах поперечных колебаний / А.А. Малашин // Доклады Академии наук. 2007. Т. 416. № 1. С. 54-56.
- [23] Мартьянов А.П. Общая классическая теория колебаний стержней и ее связь с колебаниями систем из упругих элементов / А.П. Мартьянов, Ю.И. Матяшин, А.Р. Валиев, С.М. Яхин, А.А. Мартьянов // Вестник Казанского государственного аграрного университета. — 2011. — Т. 21, № 3. — С. 90–94.
- [24] Меач Мон О корретности математической модели малых поперечных колебаний стилтьесовской струны с произвольным распределением масс / Меач Мон // Вестник Воронежского института ГПС МЧС России. — 2014. — № 2. — С. 31–34.
- [25] Меач Мон О методе конечных элементов, адаптированного для математической модели четвертого порядка с производными по мере / Меач Мон // Современные методы теории краевых задач. Материалы Воронежской весенней математической школы «Понтрягинские чтения — XXV». — Воронеж, 2014. — С. 124–125.
- [26] Меач Мон Об адаптации метода конечных элементов для математической модели второго порядка с негладкими коэффициентами /

Меач Мон // Современные методы теории краевых задач. Материалы Воронежской весенней математической школы «Понтрягинские чтения — XXV». — Воронеж, 2014. — С. 122–124.

- [27] Никитин А.А. Оптимальное граничное управление колебаниями струны, производимое силой при упругом закреплении / А.А. Никитин // Дифференциальные уравнения. — 2011. — Т. 47, № 12. — С. 1773.
- [28] Николенко Л.Д. Некоторые критерии неколебательности дифференциального уравнения четвёртого порядка / Л.Д. Николенко // Докл. АН СССР. — 1957. — Т. 114, № 3. — С. 483–485.
- [29] Осцилляционный метод Штурма в спектральных задач / Покорный Ю.В. и др. М.: Физматлит, 2009. 192с.
- [30] Петровский И.Г. Лекции по теории обыкновенных дифференциальных уравнений / И.Г. Петровский. — М. : Наука, 1984. — 296 с.
- [31] Покорный Ю.В. О нерегулярном расширении осцилляционной теории спектральной задачи Штурма-Лиувилля / Ю.В. Покорный, М.Б. Зверева, А.С. Ищенко, С.А. Шабров // Математические заметки. — 2007. — Т. 82, № 4. — С. 578–582.
- [32] Покорный Ю.В. Осцилляционная теория Штурма–Лиувилля для импульсных задач / Ю.В. Покорный, М.Б. Зверева, С.А. Шабров // Успехи математических наук. — 2008. — Т. 63, вып. 1 (379). — С. 98–141.
- [33] Ректорис К. Вариационные методы в математической физике и технике / К. Ректорис ; пер. с англ. под ред. К.И. Бабенко и Б.Е. Победри. — М. : Мир, 1985. — 590 с.
- [34] Сакс С. Теория интеграла. Издательство: Иностранной литературы. 1949. 496с.
- [35] Сансоне Дж. Обыкновенные дифференциальные уравнения : в 2 т. / Дж. Сансоне ; пер. с итал. Н.Я. Виленкина. — Т. 1. — М. : Изд-во иностр. лит., 1953. — 346 с.
- [36] Федотов И.А. Теория свободных и вынужденных колебаний твердого стержня, основанная на модели Рэлея / И.А. Федотов, А.Д. Полянин, М.Ю. Шаталов // Доклады Академии наук. 2007. Т. 417. № 1. С. 56-61.

- [37] Чабакаури Г.Д. О процессе колебаний струны со свободным правым концом и малым по модулю граничным управлением на левом конце / Г.Д. Чабакаури // Дифференциальные уравнения. 2003. Т. 39, № 6. С. 820–828.
- [38] Шабров С.А. О краевых задачах с импульсными коэффициентами : 01.01.02 диф. уравнения : дис. . . . канд. физ.-мат. наук / С.А. Шабров ; Воронеж. гос. ун-т ; 27 дек. 2000 г. Воронеж : Б.и., 2000. 74 с.
- [39] Шабров С.А. О необходимом условии минимума одного квадратичного функционала с интегралом Стилтьеса необходимом условии минимума одного квадратичного функционала с интегралом Стилтьеса / С.А. Шабров // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. — 2012. — Т. 12, № 1. — С. 52–55.
- [40] Bonsall F.F. Linear operators in complete positive cones / F.F. Bonsall // Proc. London Math. Soc. 1958. V. 3, № 8. P. 53–75.
- [41] Lagnese J.E. Control of planar networks of Timoshenko beams / Lagnese J.E., Leugering G., Schmidt E.J.P.G. // SIAM J. Control Optim. – 1993. V. 31. – P.780–811.
- [42] Lagnese J.E. Modelling analysis and control of dynamic elastic multilink structures / Lagnese J.E., Leugering G., Schmidt E.J.P.G. // Boston: Birkhäuser, 1994.
- [43] Pandit S.G. Diffirential system involving impulses / S.G. Pandit, S.G. Deo // Lect. Notes. Math. - 1982. - V. 954.
- [44] Pokornyi Yu.V. An Irregular Extension of the Oscillation Theory of the Sturm-Liouville Spectral Problem / Yu.V. Pokornyi, M.B. Zvereva, S.A. Shabrov, A.S. Ishchenko // Mathematical Notes. — 2007. — T. 82, № 3–4. — C. 518–521.
- [45] Pokornyi Yu.V. Toward a Sturm-Liouville Theory for an Equation with Generalized Coefficients / Yu.V. Pokornyi, S.A. Shabrov // Journal of Mathematical Sciences. — 2004. — T. 119, № 6. — C. 769–787.
- [46] Wie Zhongli A class of fours order singular boundary value problem / Zhongli Wie // Appl. Math. and Comput. — 2004.153. — № 3. — P. 865–884.

Приложение А

Приложения

А.1 Текст программы Моп.1.3.0.ру

```
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
# Колебания струны
import math
import scipy.special
import copy
import scipy.integrate as SQ
import copy,time
import Progonka
import pylab
from matplotlib import mlab
from numpy import matrix
from numpy import linalg
import Dannie3a as Dannie
a = 0.0
b = 1.0
N=100
NN=N-1
tau=0.005
VV=True
```

```
while VV:
    try:
        print "Введите шаг по временной переменной"
        print "рекомендуем между 0.01 и 0.001"
        tau=float(input())
        VV=False
    except:
        print "Некорректное число"
if tau<0.001 or tau>0.01:
    tau=0.005
print "Введите количество шагов по временной переменной"
Kol=0
while Kol==0:
    try:
        Kol=int(input())
        if Kol==0:
             print "Нулевое значение недопустимо"
    except:
        print "Некорретное число"
print "Вы хотите построить график приближенного решения\
или получить таблицу значений?"
print "1 - график"
print "2 - записать в txt-файл"
Vibor=1
VV=True
while VV:
    try:
        Vibor=input("Сделай выбор. По умолчанию 1: ")
    except:
        Vibor=1
    VV=not (Vibor==1 or Vibor==2)
VV=1
tt1=time.time()
Vv=True
while Vv:
    if Vibor==2:
        print "Введите имя файла"
        print "По умолманию имя файла - RESULT.txt"
        print "Если такой файл существует, он будет заменен"
```

```
try:
            NAME=raw_input()
            if NAME=='':
                 NAME='RESULT.txt'
            Vv=False
        except:
            NAME='RESULT.txt'
    else:
        Vv=False
print "Поехали..."
A=[]
A += [2/(3.0*N) \text{ for i in } xrange(0,NN)]
B=[]
B+=[1/(6.0*N) \text{ for i in } xrange(0,NN)]
x1=[]
x1+=[0.0 for i in xrange(0,NN)]
x2=[]
x2+=[0.0 for i in xrange(0,NN)]
for j in range(1,NN+1):
    c,d=SQ.quad(lambda x:Dannie.PhiO(x)*((1.0*N)*x-j+1),
         (j-1.0)/N, (1.0*j)/N)
    x1[j-1]+=c
    c,d=SQ.quad(lambda x:Dannie.Phi0(x)*(j+1-1.0*N*x),
         (1.0*j)/N, (j+1.0)/N)
    x1[j-1]+=c
u1=Progonka.progonka(A,B,x1,NN)
for j in range(1,NN+1):
    c,d=SQ.quad(lambda x:Dannie.Phi1(x)*(N*x-j+1), \
          (j-1.0)/N, (1.0*j)/N)
    x2[j-1]+=c
    c,d=SQ.quad(lambda x:Dannie.Phi1(x)*(j+1-N*x), \
          (1.0*j)/N, (j+1.0)/N)
    x2[j-1]+=c
uu2=Progonka.progonka(A,B,x2,NN)
u2=[]
```

```
u2+=[0.0 for i in range(NN)]
for i in range(NN):
    u2[i]=u1[i]+uu2[i]*tau
# Завершение нахождения начальных данных
# или двух начальных слоев
A=[]
A+=[0.0 for i in range(NN)]
A1=[]
A1+=[0.0 for i in range(NN-1)]
B=[]
B+=[0.0 for i in range(NN)]
B1=[]
B1+=[0.0 \text{ for i in range}(NN-1)]
for i in range(1,NN+1):
    c,d=SQ.quad(lambda x:Dannie.M(x)*((1.0*N)*x-i+1)**2,\
          (i-1.0)/N, (1.0*i)/N)
    A[i-1]=c
    c,d=SQ.quad(lambda x:Dannie.M(x)*(i+1-(1.0*N)*x)**2,\
          (1.0*i)/N, (i+1.0)/N)
    A[i-1] + = c
    for j in range(len(Dannie.xii)):
        if ((i-1.0)/N < Dannie.xii[j]) and
             (Dannie.xii[j]<(1.0*i)/N):
            A[i-1]+=Dannie.Mxii[j]*\
            ((1.0*N)*Dannie.xii[j]-i+1)**2
        if ((i+1.0)/N > Dannie.xii[j]) and
             (Dannie.xii[j]>=(1.0*i)/N):
            A[i-1]+=Dannie.Mxii[j]*\
            (i+1.0-(1.0*N)*Dannie.xii[j])**2
    c,d=SQ.quad(lambda x: Dannie.p(x)*(1.0*N)**2,\
        (i-1.0)/N, (1.0*i)/N)
    B[i-1]+=c
    c,d=SQ.quad(lambda x: Dannie.p(x)*(1.0*N)**2,\
        (i*1.0)/N, (1.0+i)/N)
    B[i-1]+=c
    c,d=SQ.quad(lambda x:Dannie.q(x)*((1.0*N)*x-i+1)**2,
```

```
(i-1.0)/N, (1.0*i)/N)
    B[i-1]+=c
    c,d=SQ.quad(lambda x:Dannie.q(x)*(i+1-(1.0*N)*x)**2,\
        (1.0*i)/N, (i+1.0)/N)
    B[i-1]+=c
    for j in range(len(Dannie.xii)):
        if ((i-1.0)/N < Dannie.xii[j]) and
             (Dannie.xii[j]<(1.0*i)/N):
            B[i-1]+=Dannie.Qxii[j]*\
              ((1.0*N)*Dannie.xii[j]-i+1)**2
        if ((i+1.0)/N > Dannie.xii[j]) and
             (Dannie.xii[j]>=(1.0*i)/N):
            B[i-1]+=Dannie.Qxii[j]*\
            (i+1.0-(1.0*N)*Dannie.xii[j])**2
for i in range(1,NN):
    c,d=SQ.quad(lambda x: Dannie.M(x)*(i+1-(1.0*N)*x)*
         ((1.0*N)*x-i), (1.0*i)/N, (i+1.0)/N)
    A1[i-1]+=c
    for j in range(len(Dannie.xii)):
        if ((i+1.0)/N > Dannie.xii[j]) and\
            (Dannie.xii[j]>=(1.0*i)/N):
            A1[i-1]+=Dannie.Mxii[j]*\
            (i+1.0-(1.0*N)*Dannie.xii[j])*\
            ((1.0*N)*Dannie.xii[j]-i)
    c,d=SQ.quad(lambda x:Dannie.p(x)*(-1.0*N**2),\
       (1.0*i)/N, (i+1.0)/N)
    B1[i-1]+=c
    c,d=SQ.quad(lambda x: Dannie.q(x)*)
    (i+1-(1.0*N)*x)*((1.0*N)*x-i), (1.0*i)/N, (i+1.0)/N)
    B1[i-1]+=c
    for j in range(len(Dannie.xii)):
        if ((i+1.0)/N > Dannie.xii[j]) and
               (Dannie.xii[j]>=(1.0*i)/N):
            B1[i-1]+=Dannie.Qxii[j]*\
            (i+1.0-(1.0*N)*Dannie.xii[j])*\
            ((1.0*N)*Dannie.xii[j]-i)
# Закончили вычисление коэффициентов системы
tex.write(str(N)+'\r')
w=[]
```

```
for j in range(3*Kol+1):
#
    fff=[]
    F=[]
    F+=[0.0 for i in range(NN)]
    for i in range(NN):
        c,d=SQ.quad(lambda x: Dannie.f(x,(1.0*j)*tau)*\
                 ((1.0*N)*x-i+1), (i-1.0)/N,(1.0*i)/N)
        F[i-1]+=c
        c,d=SQ.quad(lambda x: Dannie.f(x,(1.0*j)*tau)*\
                 (i+1-(1.0*N)*x), (1.0*i)/N, (i+1.0)/N)
        F[i-1]+=c
        for jj in range(len(Dannie.xii)):
            if ((i-1.0)/N < Dannie.xii[jj]) and
             (Dannie.xii[jj]<(1.0*i)/N):
                F[i-1]+=Dannie.Fxii[jj]*((1.0*N)*\
                  Dannie.xii[jj]-i+1)
            if ((i+1.0)/N > Dannie.xii[jj]) and\
                  (Dannie.xii[jj]>=(1.0*i)/N):
                F[i-1]+=Dannie.Fxii[jj]*\
                  (i+1.0-(1.0*N)*Dannie.xii[jj])
    fff=[F[0]-B[0]*u2[0]-B1[0]*u2[1]]
    for i in range(1,NN-1):
        fff+=[F[i]-B1[i-1]*u2[i-1]-B[i]*u2[i]-B1[i]*u2[i+1]]
    fff+=[F[NN-1]-B1[NN-2]*u2[NN-2]-B[NN-1]*u2[NN-1]]
    Aa=copy.deepcopy(A)
    Aa1=copy.deepcopy(A1)
    fff1=copy.deepcopy(fff)
    uu3=Progonka.progonka(Aa,Aa1,fff1,NN)
    u3=[]
    u3=[0.0 for i in range(NN)]
    for i in range(NN):
        u3[i]=2*u2[i]-u1[i]+uu3[i]*tau**2
    tex.write(str('0.0')+'\r')
    tex.write(str('0.0')+'\r')
    for lk in xrange(1,NN+1):
        tex.write(str(lk*1.0/N)+'\r')
```

```
tex.write(str(u1[lk-1])+'\r')
    tex.write(str('1.0')+'\r')
    tex.write(str('0.0')+'\r')
    if (j%3==0):
        w = w + 113
    u1=copy.deepcopy(u2)
    u2=copy.deepcopy(u3)
tex.close
if Vibor==1:
    try:
         import os
        os.remove(NAME)
    except:
        dx=0.01
    dx=0.01
    xlist = mlab.frange (0, 1, dx)
    def Pribl(x,m):
        for j in range(N):
             if 0 \le x and x \le 1.0/N:
                 return w[(m-1)*NN]*x*N
             elif (x>= (1.0*(N-1))/N):
                 return w[(m-1)*NN+NN-1]*(1.0-x)*N
             elif (1.0*j/N \le x) and (x \le 1.0*(j+1)/N):
                 return w[(m-1)*NN+j-1]+
                 (w[(m-1)*NN+j]-w[(m-1)*NN+j-1])*N*(x-1.0*j/N)
# Вычислим значение функции в заданных точках
    nn0=1
    while nnO<Kol:
        ylist2 = [Pribl(x,nn0) for x in xlist]
        ylist1 = [0 for x in xlist]
        ylist3 = [0.025 \text{ for } x \text{ in } xlist]
        ylist4 = [-0.025 \text{ for } x \text{ in } xlist]
        pylab.plot (xlist, ylist1)
        pylab.plot (xlist, ylist2)
        pylab.plot (xlist, ylist3)
        pylab.plot (xlist, ylist4)
        pylab.show()
        nn0+=1
```

А.2 Значения приближенного решения в первом численном эксперименте

					x				
t	0,1	0,2	0,3	$0,\!4$	$0,\!5$	$0,\!6$	$0,\!7$	0,8	$0,\!9$
0.0	0	0	159	360	360	159	0	0	0
0.01	0	0	159	360	360	159	0	0	0
0.02	0	0	160	359	359	160	0	0	0
0.03	0	0	160	359	359	160	0	0	0
0.04	0	2	160	358	358	160	2	0	0
0.05	0	3	160	356	356	160	3	0	0
0.06	0	5	160	354	354	160	5	0	0
0.07	0	7	160	352	352	160	7	0	0
0.08	0	9	160	350	350	160	9	0	0
0.09	0	12	161	347	347	161	12	0	0
0.1	0	15	161	344	344	161	15	0	0
0.11	0	18	162	340	340	162	18	0	0
0.12	0	21	162	337	337	162	21	0	0
0.13	0	25	162	333	333	162	25	0	0
0.14	0	28	163	329	329	163	28	0	0
0.15	0	32	164	325	325	164	32	0	0
0.16	0	36	165	321	321	165	36	0	0
0.17	0	40	166	317	317	166	40	0	0
0.18	0	45	166	313	313	166	45	0	0
0.19	0	49	167	309	309	167	49	0	0
0.2	0	53	169	306	306	169	53	0	0
0.21	0	58	170	302	302	170	58	0	0
0.22	0	63	172	299	299	172	63	0	0
0.23	0	67	175	295	295	175	67	0	0
0.24	0	72	177	292	292	177	72	0	0
0.25	0	77	179	289	289	179	77	0	0
0.26	0	82	181	286	286	181	82	0	0
0.27	0	86	183	283	283	183	86	0	0
0.28	0	91	185	280	280	185	91	0	0
0.29	0	96	187	277	277	187	96	2	0
0.3	0	101	189	275	275	189	101	3	0

Значения, приведенные в таблице, надо умножить на 10^{-5} .

					-				
0.31	0	106	190	272	272	190	106	5	0
0.32	0	110	191	270	270	191	110	7	0
0.33	0	115	192	268	268	192	115	9	0
0.34	0	119	193	266	266	193	119	12	0
0.35	0	124	193	264	264	193	124	15	0
0.36	0	129	194	262	262	194	128	18	0
0.37	0	133	194	261	261	194	133	21	0
0.38	1	137	194	259	259	194	137	25	0
0.39	1	141	195	258	258	195	141	28	0
0.4	1	145	195	257	257	195	145	32	0
0.41	1	149	196	255	255	196	149	36	0
0.42	2	153	196	255	255	196	153	40	0
0.43	2	156	197	254	254	197	157	44	0
0.44	3	160	198	254	254	198	160	49	0
0.45	3	164	199	254	254	199	164	53	0
0.46	4	167	200	255	255	200	167	58	0
0.47	4	171	201	255	255	202	170	62	0
0.48	5	174	203	256	256	203	173	67	0
0.49	5	177	205	257	257	205	175	72	0
0.5	6	179	206	258	258	206	178	77	0
0.51	7	181	208	259	259	208	181	81	0
0.52	8	183	210	260	260	210	183	86	0
0.53	8	184	212	261	261	212	185	91	0
0.54	9	185	214	262	262	214	187	96	2
0.55	10	185	216	263	263	216	189	101	3
0.56	11	185	218	263	263	218	190	105	5
0.57	12	184	220	264	264	220	191	110	7
0.58	13	182	222	264	264	222	192	115	9
0.59	14	180	225	264	264	225	192	119	11
0.6	15	178	227	263	263	227	193	124	14
0.61	16	176	229	263	263	229	193	128	16
0.62	17	173	231	263	263	231	194	132	19
0.63	19	170	234	262	262	234	194	137	22
0.64	20	167	236	261	261	236	194	141	26
0.65	21	164	238	260	260	238	195	145	29
0.66	22	161	240	259	259	240	195	149	32
0.67	24	158	242	257	257	243	196	153	36

0.68	25	155	245	254	255	245	197	156	39
0.69	26	152	247	252	252	247	198	160	43
0.7	28	149	249	249	249	249	199	163	46
0.71	29	146	251	246	246	250	200	166	50
0.72	30	143	253	242	242	252	202	169	54
0.73	32	141	255	238	238	254	203	173	57
0.74	33	138	257	234	234	256	204	176	61
0.75	35	136	258	230	230	257	206	178	64
0.76	36	134	259	226	226	259	208	181	67
0.77	37	131	260	222	222	260	210	183	71
0.78	39	129	260	217	218	261	212	185	74
0.79	40	127	260	213	213	262	214	187	78
0.8	42	125	259	209	209	263	216	189	81
0.81	43	124	258	205	205	263	218	190	84
0.82	45	122	256	201	201	263	220	190	87
0.83	46	121	254	197	197	264	222	191	90
0.84	48	120	252	193	193	264	225	191	93
0.85	49	118	249	189	189	264	227	192	95
0.86	51	117	246	185	185	264	229	192	97
0.87	52	116	243	181	181	263	231	192	100
0.88	53	115	239	177	177	263	234	192	102
0.89	55	115	235	173	174	262	236	192	104
0.9	56	114	230	170	170	261	238	192	106
0.91	58	114	225	166	166	259	240	192	108
0.92	59	114	219	163	163	257	242	192	109
0.93	60	113	212	159	159	255	245	192	111
0.94	62	113	206	156	156	252	247	192	113
0.95	63	113	199	153	152	249	248	192	114
0.96	64	113	192	150	149	245	250	193	116
0.97	66	113	184	147	146	242	252	193	117
0.98	67	113	176	144	142	238	254	193	118
0.99	68	113	168	141	139	234	256	193	118
1.0	69	114	160	138	136	230	258	193	118
1.01	71	114	152	134	133	226	259	194	118
1.02	72	114	144	130	130	222	260	195	117
1.03	73	115	136	126	127	218	261	195	116
1.04	75	115	128	122	124	214	262	196	114

1.05	76	116	120	117	121	209	262	197	112
1.06	77	117	112	113	118	205	263	197	109
1.07	79	118	104	108	115	201	263	197	106
1.08	80	119	96	103	112	197	264	198	102
1.09	81	120	88	98	110	193	264	198	99
1.1	82	121	81	93	107	189	263	198	95
1.11	84	122	74	87	104	185	263	198	91
1.12	85	123	67	82	102	181	262	199	86
1.13	86	123	60	76	99	178	261	199	82
1.14	88	123	53	70	97	174	260	199	78
1.15	89	122	47	64	94	170	258	199	73
1.16	90	121	40	58	92	167	256	199	69
1.17	91	120	34	51	89	163	253	199	65
1.18	93	118	28	45	87	159	250	200	62
1.19	94	115	23	38	84	156	246	200	58
1.2	95	113	17	31	82	153	242	200	54
1.21	96	109	12	25	80	149	238	200	51
1.22	98	106	7	18	78	146	233	200	47
1.23	99	102	2	12	75	143	228	200	44
1.24	100	98	-2	5	73	140	223	199	41
1.25	101	94	-7	0	71	136	218	198	39
1.26	103	89	-11	-5	69	133	213	196	37
1.27	104	84	-15	-10	67	130	207	194	34
1.28	105	80	-18	-15	65	127	202	192	32
1.29	106	75	-21	-20	63	124	196	189	30
1.3	107	70	-24	-25	61	121	191	186	29
1.31	108	65	-27	-29	59	118	185	183	27
1.32	109	60	-29	-33	57	115	179	179	25
1.33	111	55	-31	-36	55	112	173	175	24
1.34	112	50	-33	-40	53	109	167	171	23
1.35	113	45	-34	-42	51	106	161	167	22
1.36	114	40	-36	-45	49	103	155	162	22
1.37	115	36	-37	-47	46	100	149	157	21
1.38	116	31	-39	-49	44	97	143	152	21
1.39	117	26	-41	-50	42	95	137	146	21
1.4	117	21	-43	-52	40	92	132	140	20
1.41	118	17	-45	-53	38	89	126	134	20

1.42	119	12	-47	-54	36	85	121	127	21
1.43	120	8	-49	-55	33	82	116	119	21
1.44	120	4	-52	-55	31	79	110	112	21
1.45	121	0	-54	-56	29	75	105	104	22
1.46	122	-4	-57	-56	27	72	100	96	22
1.47	122	-7	-59	-57	24	69	94	88	22
1.48	123	-11	-62	-57	22	66	89	80	23
1.49	123	-15	-64	-56	19	62	83	72	24
1.5	123	-18	-66	-56	17	59	77	63	24
1.51	124	-22	-68	-56	15	56	71	55	25
1.52	124	-25	-70	-55	13	53	65	47	26
1.53	124	-28	-72	-54	10	49	59	39	26
1.54	124	-31	-73	-52	8	46	52	31	28
1.55	124	-33	-75	-51	5	42	45	23	29
1.56	124	-35	-76	-49	2	38	39	15	30
1.57	124	-37	-77	-47	0	34	32	7	32
1.58	124	-39	-77	-45	-3	30	24	0	33
1.59	124	-41	-78	-44	-5	26	17	-6	34
1.6	123	-43	-78	-42	-8	22	10	-14	35
1.61	123	-45	-78	-40	-11	18	3	-20	35
1.62	123	-46	-78	-39	-14	14	-3	-27	35
1.63	122	-47	-78	-38	-17	10	-11	-33	35
1.64	122	-47	-78	-37	-20	6	-18	-39	34
1.65	121	-48	-77	-36	-23	2	-25	-45	33
1.66	120	-48	-77	-35	-27	-1	-32	-51	31
1.67	120	-48	-76	-35	-30	-5	-40	-57	29
1.68	119	-48	-76	-35	-34	-9	-47	-62	26
1.69	118	-47	-75	-35	-37	-13	-54	-68	23
1.7	117	-46	-74	-35	-41	-17	-61	-73	20
1.71	116	-45	-73	-35	-45	-22	-68	-78	16
1.72	115	-43	-72	-36	-48	-26	-75	-83	12
1.73	114	-41	-71	-37	-52	-31	-81	-87	7
1.74	113	-39	-69	-38	-56	-36	-88	-91	3
1.75	112	-36	-68	-40	-59	-41	-94	-95	-1
1.76	111	-34	-66	-42	-63	-46	-100	-99	-6
1.77	110	-31	-65	-44	-67	-52	-107	-102	-11
1.78	109	-28	-63	-47	-71	-58	-113	-105	-16

1.79	107	-24	-61	-50	-75	-64	-119	-108	-21
1.8	106	-21	-60	-54	-79	-70	-125	-110	-26
1.81	105	-17	-58	-58	-83	-77	-131	-113	-31
1.82	103	-13	-56	-61	-87	-84	-136	-115	-36
1.83	102	-9	-55	-65	-91	-90	-142	-117	-41
1.84	100	-5	-54	-69	-95	-97	-147	-119	-46
1.85	99	0	-52	-73	-99	-104	-152	-121	-51
1.86	97	3	-50	-77	-103	-111	-157	-124	-55
1.87	96	7	-48	-81	-107	-119	-162	-126	-60
1.88	94	12	-46	-85	-111	-126	-166	-128	-64
1.89	92	16	-44	-88	-114	-134	-171	-130	-68
1.9	91	21	-41	-92	-117	-141	-175	-132	-72
1.91	89	25	-39	-96	-119	-148	-180	-135	-76
1.92	87	29	-36	-99	-122	-156	-184	-137	-80
1.93	85	34	-33	-102	-125	-163	-189	-140	-84
1.94	84	38	-30	-105	-128	-171	-193	-143	-88
1.95	82	42	-26	-108	-131	-178	-197	-145	-91
1.96	80	46	-22	-110	-134	-186	-201	-148	-94
1.97	78	51	-19	$-11\overline{3}$	$-13\overline{7}$	$-19\overline{3}$	-205	$-15\overline{1}$	-96
1.98	76	55	-16	$-11\overline{5}$	-140	-200	-208	$-15\overline{4}$	-99
1.99	74	58	-13	$-11\overline{7}$	$-14\overline{3}$	-207	$-21\overline{1}$	$-15\overline{7}$	-101
2.0	72	62	-10	-118	-146	-214	-215	-160	-103

А.3 Значения приближенного решения во втором численном эксперименте

Значения, приведенные в таблице, надо умножить на 10^{-5} .

					x				
t	0,1	$0,\!2$	0,3	$0,\!4$	0,5	$0,\!6$	0,7	0,8	$0,\!9$
0.0	0	0	0	0	0	0	0	0	0
0.01	0	0	0	0	0	0	0	0	0
0.02	0	0	0	0	0	0	0	0	0
0.03	0	0	0	0	0	0	0	0	0
0.04	0	0	1	1	0	1	1	0	0
0.05	0	0	2	2	0	2	2	0	0
0.06	1	0	5	5	0	5	5	0	0

0.07	3	0	8	10	0	10	8	0	0
0.08	5	0	14	16	0	16	14	0	0
0.09	8	0	21	24	0	24	21	0	0
0.1	11	0	30	35	0	35	30	0	0
0.11	15	0	41	48	0	48	41	0	0
0.12	21	0	55	65	0	65	55	0	0
0.13	27	0	72	84	0	84	72	0	0
0.14	34	0	91	107	1	107	91	0	1
0.15	43	0	114	134	1	134	114	0	1
0.16	53	0	140	164	2	164	140	1	2
0.17	64	1	170	199	3	199	170	1	2
0.18	77	1	203	239	3	239	203	1	3
0.19	92	1	241	284	5	284	241	2	4
0.2	108	2	283	333	6	333	283	2	5
0.21	126	2	329	387	7	387	329	3	6
0.22	144	3	379	446	9	446	379	4	8
0.23	164	3	434	509	11	509	434	4	9
0.24	186	4	493	577	13	577	493	5	11
0.25	208	5	556	650	15	650	556	6	13
0.26	231	6	623	727	18	727	623	8	16
0.27	255	7	694	808	21	808	695	9	18
0.28	279	8	770	893	24	893	770	10	21
0.29	304	10	850	982	28	982	850	12	24
0.3	330	11	934	1075	32	1075	934	14	27
0.31	356	13	1021	1172	37	1172	1021	16	31
0.32	382	15	1113	1273	42	1273	1113	18	35
0.33	408	17	1209	1377	48	1377	1210	20	39
0.34	434	19	1310	1485	54	1485	1310	23	43
0.35	460	21	1414	1596	60	1596	1414	26	48
0.36	486	24	1522	1710	68	1710	1523	29	52
0.37	511	27	1634	1827	75	1827	1634	32	57
0.38	536	30	1749	1947	84	1947	1750	36	63
0.39	561	33	1867	2069	93	2069	1868	39	68
0.4	584	36	1988	2192	103	2192	1989	43	74
0.41	607	40	2111	2318	113	2318	2112	48	79
0.42	629	44	2236	2445	124	2445	2238	52	86
0.43	649	49	2363	2573	137	2573	2364	57	92

0.44	669	53	2491	2701	149	2701	2492	62	98
0.45	687	58	2619	2830	163	2830	2621	68	105
0.46	704	63	2748	2958	178	2958	2750	73	112
0.47	720	69	2877	3086	193	3086	2879	80	119
0.48	734	75	3005	3214	209	3214	3008	86	126
0.49	746	81	3132	3340	227	3340	3135	93	134
0.5	757	88	3258	3465	245	3465	3262	100	142
0.51	765	95	3382	3588	264	3588	3386	108	149
0.52	771	102	3505	3709	284	3709	3509	116	158
0.53	776	110	3625	3828	306	3828	3629	124	166
0.54	778	118	3742	3943	328	3944	3747	133	175
0.55	778	126	3856	4056	352	4056	3861	142	183
0.56	776	135	3966	4165	376	4166	3972	152	192
0.57	772	145	4072	4271	402	4271	4079	163	202
0.58	766	154	4174	4372	429	4373	4181	173	211
0.59	759	165	4271	4469	457	4470	4278	185	221
0.6	749	175	4363	4561	486	4563	4371	196	231
0.61	739	186	4450	4649	517	4650	4458	209	241
0.62	726	198	4531	4731	549	4733	4540	221	252
0.63	713	210	4606	4808	582	4810	4615	235	262
0.64	698	222	4675	4879	616	4881	4685	248	273
0.65	682	235	4737	4944	652	4946	4747	263	284
0.66	665	249	4791	5002	688	5005	4803	278	296
0.67	648	263	4839	5054	726	5057	4851	293	307
0.68	630	277	4878	5098	766	5102	4891	309	319
0.69	611	292	4909	5136	806	5140	4923	325	331
0.7	591	307	4932	5166	848	5171	4947	342	343
0.71	571	322	4947	5189	891	5194	4962	360	355
0.72	552	338	4953	5204	935	5210	4969	378	367
0.73	532	355	4950	5212	980	5217	4967	396	379
0.74	512	372	4939	5211	1027	5217	4956	415	392
0.75	492	389	4919	5203	1074	5209	4937	435	404
0.76	473	407	4890	5186	1123	5193	4910	455	417
0.77	454	425	4853	5162	1173	5170	4874	475	430
0.78	435	443	4808	5130	1224	5139	4830	496	442
0.79	417	462	4755	5091	1277	5100	4778	518	455
0.8	400	482	4694	5044	1330	5053	4717	540	468

0.81	384	501	4625	4989	1384	4999	4650	562	480
0.82	369	521	4547	4927	1439	4937	4574	585	493
0.83	355	541	4463	4857	1495	4868	4491	608	506
0.84	342	562	4371	4779	1552	4791	4400	631	519
0.85	331	583	4271	4694	1610	4706	4302	655	531
0.86	322	604	4164	4601	1669	4614	4197	680	544
0.87	314	625	4050	4501	1728	4514	4085	704	557
0.88	308	647	3930	4393	1788	4407	3966	729	569
0.89	303	669	3803	4279	1849	4294	3841	755	582
0.9	301	691	3670	4158	1911	4173	3710	780	595
0.91	300	713	3531	4030	1973	4046	3573	806	608
0.92	301	736	3387	3897	2036	3914	3431	832	620
0.93	303	759	3237	3758	2099	3775	3284	859	633
0.94	307	782	3083	3613	2162	3632	3132	886	646
0.95	312	805	2925	3464	2226	3484	2976	912	658
0.96	319	828	2763	3311	2290	3331	2817	940	671
0.97	327	851	2598	3154	2355	3175	2654	967	683
0.98	336	875	2429	2993	2419	3015	2488	994	696
0.99	347	898	2258	2830	2484	2853	2320	1022	709
1.0	358	922	2086	2664	2549	2688	2150	1050	721
1.01	370	946	1911	2496	2614	2521	1978	1077	733
1.02	382	969	1735	2326	2678	2353	1806	1105	746
1.03	396	993	1558	2156	2743	2184	1632	1133	758
1.04	409	1017	1381	1985	2807	2014	1458	1161	770
1.05	424	1040	1204	1813	2871	1844	1284	1189	782
1.06	438	1064	1028	1642	2935	1674	1111	1216	793
1.07	452	1087	852	1472	2998	1506	939	1244	805
1.08	467	1111	678	1304	3060	1339	768	1272	816
1.09	481	1134	506	1137	3123	1173	599	1299	827
1.1	495	1158	336	972	3184	1010	433	1327	838
1.11	509	1181	168	810	3245	850	269	1354	849
1.12	523	1204	4	650	3305	692	107	1381	860
1.13	536	1226	-157	494	3364	538	-49	1408	870
1.14	548	1249	-315	342	3422	388	-203	1434	880
1.15	560	1271	-468	193	3479	241	-353	1461	890
1.16	571	1294	-617	50	3535	100	-498	1487	899
1.17	581	1315	-761	-87	3590	-35	-638	1512	909

1.18	589	1337	-900	-220	3644	-165	-773	1538	918
1.19	597	1359	-1032	-346	3697	-289	-902	1563	926
1.2	602	1380	-1159	-466	3748	-407	-1026	1587	935
1.21	607	1400	-1280	-579	3798	-518	-1142	1612	943
1.22	610	1421	-1393	-685	3847	-621	-1252	1636	951
1.23	611	1441	-1500	-784	3895	-717	-1354	1659	959
1.24	610	1461	-1599	-874	3941	-805	-1450	1682	966
1.25	608	1481	-1690	-957	3985	-885	-1537	1705	974
1.26	604	1500	-1774	-1032	4029	-957	-1617	1727	981
1.27	599	1519	-1850	-1099	4070	-1021	-1689	1749	987
1.28	592	1537	-1918	-1157	4110	-1077	-1754	1770	994
1.29	583	1555	-1978	-1208	4149	-1125	-1810	1791	1000
1.3	574	1573	-2030	-1251	4185	-1165	-1859	1812	1006
1.31	563	1590	-2074	-1285	4221	-1197	-1899	1832	1012
1.32	551	1607	-2109	-1312	4254	-1221	-1932	1851	1018
1.33	538	1623	-2137	-1331	4286	-1236	-1956	1870	1023
1.34	524	1639	-2156	-1341	4316	-1244	-1972	1888	1028
1.35	509	1655	-2167	-1344	4345	-1244	-1979	1906	1033
1.36	493	1670	-2169	-1339	4371	-1236	-1978	1923	1037
1.37	477	1685	-2162	-1325	4396	-1220	-1968	1940	1042
1.38	461	1699	-2147	-1304	4420	-1197	-1950	1956	1046
1.39	444	1713	-2123	-1276	4441	-1166	-1923	1972	1049
1.4	427	1726	-2090	-1240	4461	-1127	-1888	1987	1053
1.41	410	1739	-2049	-1196	4479	-1081	-1844	2002	1056
1.42	393	1751	-2000	-1145	4495	-1028	-1793	2016	1058
1.43	377	1763	-1943	-1088	4510	-968	-1733	2029	1061
1.44	360	1775	-1878	-1023	4523	-902	-1666	2042	1063
1.45	345	1786	-1806	-952	4534	-829	-1591	2055	1065
1.46	329	1796	-1727	-875	4543	-750	-1510	2067	1066
1.47	314	1806	-1641	-793	4551	-665	-1422	2078	1067
1.48	300	1816	-1548	-705	4557	-576	-1328	2089	1068
1.49	287	1825	-1450	-611	4562	-481	-1228	2099	1068
1.5	275	1834	-1346	-513	4564	-382	-1123	2109	1068
1.51	264	1842	-1237	-411	4566	-278	-1012	2118	1068
1.52	255	1850	-1123	-304	4565	-170	-896	2127	1067
1.53	247	1857	-1004	-193	4563	-58	-777	2135	1066
1.54	240	1864	-882	-79	4560	56	-653	2142	1065

		10-1					200		1001
1.55	236	1871	-756	38	4555	174	-526	2150	1064
1.56	233	1877	-627	158	4548	294	-396	2156	1062
1.57	232	1883	-495	280	4540	417	-264	2163	1060
1.58	233	1888	-360	404	4531	541	-129	2169	1057
1.59	237	1893	-224	530	4520	668	6	2174	1055
1.6	242	1898	-87	658	4508	795	144	2179	1052
1.61	250	1902	51	786	4495	923	283	2184	1049
1.62	260	1906	191	915	4480	1052	422	2188	1045
1.63	271	1909	331	1045	4465	1181	562	2192	1042
1.64	284	1913	471	1175	4448	1310	701	2196	1038
1.65	300	1916	610	1304	4430	1438	841	2199	1034
1.66	317	1918	749	1433	4411	1566	979	2202	1030
1.67	335	1921	887	1560	4390	1693	1116	2205	1026
1.68	355	1923	1024	1687	4369	1818	1251	2207	1022
1.69	377	1925	1158	1812	4347	1942	1384	2209	1017
1.7	400	1927	1290	1935	4324	2063	1515	2211	1012
1.71	424	1928	1419	2055	4300	2182	1642	2213	1007
1.72	449	1929	1544	2173	4275	2298	1766	2214	1002
1.73	475	1930	1666	2287	4250	2411	1886	2215	997
1.74	503	1931	1784	2399	4223	2520	2002	2216	992
1.75	530	1932	1898	2506	4196	2626	2114	2217	986
1.76	559	1932	2006	2610	4168	2727	2221	2218	981
1.77	587	1933	2111	2709	4140	2825	2323	2218	975
1.78	617	1933	2210	2805	4111	2918	2420	2218	969
1.79	646	1933	2305	2896	4081	3007	2512	2219	963
1.8	676	1933	2394	2983	4051	3092	2600	2219	956
1.81	706	1933	2479	3066	4020	3172	2682	2218	950
1.82	736	1933	2559	3144	3989	3248	2760	2218	944
1.83	765	1933	2634	3218	3957	3319	2832	2217	937
1.84	795	1932	2704	3286	3925	3386	2899	2217	930
1.85	824	1932	2769	3350	3892	3447	2962	2216	924
1.86	852	1931	2829	3410	3859	3504	3019	2215	917
1.87	880	1931	2884	3464	3826	3556	3072	2215	910
1.88	906	1930	2934	3513	3793	3603	3119	2214	903
1.89	932	1930	2979	3557	3759	3644	3162	2212	896
1.9	956	1929	3020	3596	3725	3681	3200	2211	889
1.91	979	1928	3055	3629	3691	3712	3233	2210	882

1 0 0	1001	1000	2000		0070		2221	0000	
1.92	1001	1928	3086	3657	3656	3737	3261	2209	875
1.93	1021	1927	3112	3680	3622	3758	3285	2208	869
1.94	1039	1926	3134	3698	3587	3774	3305	2206	862
1.95	1056	1926	3152	3711	3552	3785	3320	2205	855
1.96	1072	1925	3165	3719	3517	3791	3332	2204	849
1.97	1086	1925	3175	3723	3482	3793	3340	2202	843
1.98	1098	1924	3182	3723	3447	3791	3344	2201	836
1.99	1109	1924	3185	3719	3411	3785	3345	2200	830
2.0	1119	1923	3185	3711	3376	3776	3343	2198	825
2.01	1127	1923	3182	3700	3341	3763	3339	2197	819
2.02	1134	1922	3177	3685	3306	3747	3332	2195	813
2.03	1140	1922	3170	3668	3271	3729	3323	2194	808
2.04	1145	1922	3160	3649	3235	3708	3312	2193	803
2.05	1148	1922	3149	3627	3200	3685	3299	2191	799
2.06	1151	1922	3137	3603	3165	3661	3285	2190	794
2.07	1153	1922	3123	3579	3130	3635	3270	2188	790
2.08	1154	1922	3109	3553	3095	3608	3255	2187	786
2.09	1155	1922	3094	3526	3060	3581	3239	2186	782
2.1	1155	1922	3078	3499	3025	3554	3222	2184	778
2.11	1155	1922	3063	3472	2991	3526	3206	2183	775
2.12	1154	1922	3048	3445	2956	3499	3190	2182	772
2.13	1154	1922	3033	3418	2922	3472	3175	2181	769
2.14	1153	1923	3019	3392	2887	3446	3160	2179	767
2.15	1152	1923	3006	3367	2853	3421	3146	2178	765
2.16	1150	1924	2994	3343	2819	3397	3134	2177	763
2.17	1149	1924	2983	3320	2785	3375	3123	2175	761
2.18	1149	1925	2974	3299	2751	3354	3114	2174	760
2.19	1148	1926	2966	3280	2717	3336	3106	2173	758
2.2	1148	1926	2961	3263	2683	3320	3101	2172	758
2.21	1148	1927	2957	3249	2649	3306	3097	2171	757
2.22	1149	1928	2956	3238	2616	3296	3097	2169	757
2.23	1152	1929	2958	3230	2583	3289	3099	2168	757
2.24	1155	1930	2963	3226	2550	3286	3104	2167	758
2.25	1159	1931	2972	3226	2517	3286	3113	2166	759
2.26	1164	1932	2984	3229	2484	3291	3125	2165	760
2.27	1171	1933	2999	3237	2452	3300	3141	2164	762
2.28	1178	1935	3018	3249	2420	3314	3161	2163	765

2.29	1188	1936	3041	3266	2388	3332	3184	2162	767
2.3	1198	1937	3068	3287	2357	3354	3211	2162	770
2.31	1210	1939	3098	3312	2326	3381	3242	2161	774
2.32	1223	1941	3132	3341	2295	3411	3277	2160	778
2.33	1237	1943	3170	3375	2264	3447	3315	2160	782
2.34	1252	1944	3211	3413	2234	3486	3356	2159	787
2.35	1268	1947	3256	3454	2204	3529	3402	2159	793
2.36	1286	1949	3304	3500	2175	3576	3451	2159	798
2.37	1304	1951	3356	3549	2146	3626	3503	2159	805
2.38	1323	1953	3411	3601	2118	3680	3558	2159	812
2.39	1343	1956	3470	3657	2090	3738	3618	2159	819
2.4	1363	1959	3532	3717	2063	3799	3680	2159	827
2.41	1384	1962	3598	3780	2036	3863	3746	2159	835
2.42	1405	1965	3667	3846	2010	3930	3816	2160	843
2.43	1426	1968	3740	3914	1984	3999	3889	2161	852
2.44	1447	1971	3816	3985	1959	4072	3965	2162	862
2.45	1468	1975	3895	4059	1935	4146	4044	2163	871
2.46	1489	1979	3976	4135	1911	4223	4126	2164	882
2.47	1510	1983	4060	4212	1888	4301	4209	2165	892
2.48	1530	1987	4146	4291	1866	4381	4296	2167	903
2.49	1550	1992	4235	4372	1845	4462	4383	2169	915
2.5	1569	1996	4324	4453	1824	4544	4473	2171	926
2.51	1588	2001	4415	4535	1804	4626	4563	2173	938
2.52	1607	2006	4507	4617	1785	4709	4654	2175	951
2.53	1624	2012	4600	4700	1767	4791	4746	2178	963
2.54	1641	2017	4692	4781	1749	4873	4838	2181	976
2.55	1656	2023	4785	4863	1733	4954	4929	2184	990
2.56	1670	2029	4876	4943	1717	5034	5020	2187	1003
2.57	1683	2036	4967	5021	1703	5112	5109	2191	1017
2.58	1695	2042	5056	5098	1689	5188	5197	2195	1032
2.59	1704	2050	5143	5172	1677	5262	5282	2199	1046
2.6	1712	2057	5227	5244	1665	5333	5365	2204	1061
2.61	1718	2064	5309	5314	1655	5401	5445	2209	1076
2.62	1721	2072	5388	5380	1645	5467	5522	2214	1092
2.63	1723	2081	5463	5443	1637	5528	5596	2219	1107
2.64	1723	2089	5535	5501	1629	5586	5665	2225	1124
2.65	1721	2098	5602	5556	1623	5639	5730	2231	1140

2.66	1718	2107	5665	5607	1618	5688	5790	2237	1157
2.67	1712	2117	5723	5653	1614	5732	5846	2244	1174
2.68	1704	2127	5776	5694	1611	5771	5896	2251	1191
2.69	1694	2137	5824	5731	1609	5806	5942	2259	1208
2.7	1683	2147	5867	5762	1609	5835	5981	2267	1226
2.71	1670	2158	5904	5788	1609	5859	6015	2275	1244
2.72	1655	2169	5935	5808	1611	5877	6042	2284	1262
2.73	1639	2181	5958	5822	1614	5889	6063	2293	1280
2.74	1621	2193	5975	5830	1618	5894	6076	2302	1299
2.75	1602	2205	5985	5831	1623	5892	6082	2312	1317
2.76	1582	2218	5987	5826	1629	5884	6080	2322	1336
2.77	1561	2230	5981	5813	1637	5869	6071	2333	1355
2.78	1540	2244	5968	5794	1645	5847	6053	2344	1374
2.79	1518	2257	5946	5767	1655	5817	6027	2355	1393
2.8	1495	2271	5916	5733	1666	5779	5993	2366	1412
2.81	1471	2285	5877	5691	1678	5735	5950	2378	1431
2.82	1448	2299	5830	5642	1691	5682	5899	2391	1450
2.83	1424	2314	5775	5585	1705	5623	5840	2403	1469
2.84	1400	2329	5711	5521	1720	5556	5773	2416	1488
2.85	1375	2344	5640	5451	1736	5482	5697	2429	1507
2.86	1351	2359	5561	5373	1753	5400	5614	2443	1525
2.87	1327	2375	5474	5288	1770	5312	5522	2456	1544
2.88	1303	2390	5379	5196	1789	5217	5424	2470	1563
2.89	1280	2406	5277	5097	1809	5115	5317	2484	1581
2.9	1258	2422	5167	4991	1829	5006	5204	2499	1600
2.91	1236	2439	5050	4878	1850	4890	5083	2513	1618
2.92	1215	2455	4927	4759	1872	4768	4955	2528	1636
2.93	1196	2472	4796	4633	1895	4638	4821	2543	1654
2.94	1177	2488	4659	4500	1918	4502	4681	2558	1671
2.95	1161	2505	4516	4361	1942	4360	4534	2574	1689
2.96	1145	2522	4367	4216	1966	4212	4381	2589	1706
2.97	1132	2539	4212	4064	1991	4058	4223	2605	1724
2.98	1120	2555	4053	3908	2016	3898	4060	2621	1741
2.99	1109	2572	3888	3745	2042	3733	3892	2636	1757
3.0	1100	2589	3718	3578	2068	3563	3720	2652	1774