На правах рукописи

Auf

Пахарев Андрей Юрьевич

Рt/С и Pt-M/С (M=Ni, Ag) ЭЛЕКТРОКАТАЛИЗАТОРЫ: ВОЗМОЖНОСТЬ УПРАВЛЕНИЯ МИКРОСТРУКТУРОЙ И ФУНКЦИОНАЛЬНЫМИ ХАРАКТЕРИСТИКАМИ

Специальность: 02.00.05 – Электрохимия

Автореферат

диссертации на соискание ученой степени кандидата химических наук

Воронеж - 2016

Работа выполнена в ФГАОУ ВО «Южный федеральный университет»

Научный руководитель:

доктор химических наук, профессор Гутерман Владимир Ефимович

Официальные оппоненты:

Золотухина Екатерина Викторовна, доктор химических наук, ФГБУН «Институт проблем химической физики» РАН, лаборатория ионики твердого тела, ведущий научный сотрудник

Липкин Михаил Семенович, доктор технических наук, ФГБОУ ВПО «Южно-Российский государственный политехнический университет имени М.И. Платова», кафедра «химические технологии», профессор

Ведущая организация: ФГБОУ ВО «Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского»

Защита состоится 6 октября 2016 г. в 14⁰⁰ ч. на заседании диссертационного совета Д 212.038.08 по химическим наукам на базе Воронежского государственного университета по адресу: 394018, г. Воронеж, Университетская пл., 1, ауд. 439.

С диссертацией можно ознакомиться в научной библиотеке Воронежского государственного университета и на сайте www.science.vsu.ru/disser.

Автореферат разослан 5 июля 2016 г.

Ученый секретарь диссертационного совета

Ceren

Семенова Галина Владимировна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Низкотемпературные топливные элементы (НТЭ) устройства, преобразующее химическую энергию топлива и окислителя в электрическую и состоящие из совокупности электрохимических элементов (мембранно-электродных блоков), каждый из которых заключает два электрода, разделенные полимерной протонпроводящей мембраной.

для Наилучшим электрокатализатором кислородно-водородных И метанольных НТЭ является платина. Тем не менее, важной проблемой НТЭ, по-прежнему, остается высокая катодная поляризация, обусловленная относительно протеканием многостадийной реакции медленным кислорода **(PBK)**. Основные требования, электровосстановления предъявляемые к катодному электрокатализатору - высокая масс-активность в РВК, коррозионно-морфологическая стабильность, селективность, а также приемлемая стоимость. Нанесение Pt на высокодисперсный углеродный носитель позволяет максимально увеличить её каталитически активную поверхность при снижении загрузки.

В первом приближении можно выделить два основных направления совершенствования нанесенных платиносодержащих электрокатализаторов. Первое – получение систем с оптимальной морфологией и дисперсностью (площадью поверхности Pt). Развитие второго направления - синтез и исследование многокомпонентных электрокаталитических систем на основе Pt и переходных металлов (Fe, Co, Ni, Ag, Cu и др.), во многом, обусловлено высокой стоимостью и ограниченностью природных запасов Pt.

Исследования были поддержаны РФФИ (гранты 10-03-00474-а, 11-08-00499-а, 14-03-91167).

Цель работы - изучение возможностей управления составом и микроструктурой Pt/C и Pt-M/C (M=Ni,Ag) электрокатализаторов в процессе жидкофазного боргидридного синтеза и последующей постобработки, изучение взаимосвязи их электрохимического поведения с составом и структурой.

Основные задачи исследования

1. Исследовать влияние природы и состава используемого при синтезе бинарного органического растворителя на размер наночастиц (**HY**) и особенности их размерного и пространственного распределения.

2. Измерить электрохимически активную площадь поверхности (ЭХАП) Рt в полученных Pt/C и Pt-M/C материалах.

3. Изучить электрохимическое поведение и оценить активность полученных катализаторов в реакции электровосстановления кислорода (PBK).

4. Исследовать влияние постобработки на состав, структуру и электрохимическое поведение Ag@Pt/C катализаторов.

Научная новизна:

- показано, как за счет вариации состава двухкомпонентного органического растворителя, используемого в процессе синтеза, можно влиять на микроструктурные характеристики Pt/C и Pt₃Ni/C катализаторов, и, как следствие, на их электрокаталитическую активность в PBK; - показано, что электровосстановление кислорода на синтезированных Pt/C, Pt_3Ni/C и Pt-Ag/C наноструктурных катализаторах, преимущественно протекает по характерному четырехэлектронному механизму с образованием воды. Вклад побочных реакций электровосстановления кислорода в суммарный процесс для никельсодержащих катализаторов несколько выше, чем для Pt/C;

- методами последовательного химического восстановления Ag⁺, а затем Pt (IV) в углеродных суспензиях, приготовленных на основе двухкомпонентных растворителей, получены нанесенные Pt-Ag/C катализаторы, в которых поверхностные слои металлических НЧ обогащены платиной;

- показано, что проведение коррозионной и термической постобработки Pt-Ag/C материалов приводит к селективному растворению части серебра, обусловливающему уменьшение среднего размера металлических НЧ и увеличение ЭХАП катализаторов.

Практическая значимость. Разработанный метод синтеза нанесенных платиносодержащих электрокатализаторов и предложенные методы постобработки позволяют получать материалы с высокой электрокаталитической активностью. Показано, что вариация состава двухкомпонентного растворителя может быть использована в качестве способа управления микроструктурой электрокатализатора и тонкой структурой биметаллических НЧ.

Положения, выносимые на защиту:

1. Изменение природы компонентов и состава двухкомпонентных органических растворителей, используемых в процессе жидкофазного боргидридного синтеза Pt/C и Pt₃Ni/C электрокатализаторов, оказывают существенное влияние на средний размер металлических НЧ (кристаллитов) и степень их агрегации на поверхности и в порах углеродного носителя.

2. Уменьшение размера НЧ Рt или ее сплава, а также увеличение массовой доли металлической компоненты в катализаторе, как правило, сопровождаются усилением процессов агрегации НЧ. Это обусловливает сложный характер взаимосвязи среднего размера кристаллитов Pt (сплава) и ЭХАП.

3. Методы последовательного химического восстановления Ag^+ , а затем Pt (IV) в углеродных суспензиях позволяют получить нанесенные Ag@Pt/C катализаторы, в которых поверхностные слои HЧ обогащены платиной.

4. Проведение коррозионной и термической постобработки Ag@Pt/C материалов оказывает существенное влияние на их состав/структуру, за счет упорядочения структуры НЧ селективного растворения части серебра, и может быть использовано для увеличения ЭХАП катализаторов.

5. Электровосстановление кислорода на всех полученных электрокатализаторах протекает по 4х-электронному механизму, характерному для блочной поликристаллической платины.

Публикации и апробация работы. По теме диссертации опубликовано 18 работ, из них 3 статьи. Материалы диссертации доложены на VII Всерос. школе – семинаре студентов, аспирантов и молодых ученых по направлению «Диагностика наноматериалов и наноструктур» НАНОДИАГНОСТИКА 2014, Рязань; XII International Conf. on Nanostructured Materials NANO 2014, Moscow; 10-ой Межд. Конф. «Физико–химические проблемы возобновляемой энергетики», Черноголовка, 2014. Межд. конф. «Ионный перенос в органических и неорганических мембранах» Краснодар-Туапсе (2011, 2013, 2014); 3rd Annual World Congress of Nanoscience & Nanoechnology (Nano-S&T), Xi'an, China, 2013; VIII Межд. конф. «Фундаментальные проблемы электрохимической энергетики» Саратов, 2011; V Всерос. конф. "Физико-химические процессы в конденсированных средах и на межфазных границах""ФАГРАН-2010" Воронеж.

Структура и объем работы. Диссертация изложена на 140 страницах, состоит из введения, 4 глав, выводов, списка литературы и содержит 53 рисунка, 22 таблицы, 151 ссылку.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы, сформулированы цель и задачи исследования, отражены научная новизна и практическая значимость работы, представлены сведения о структуре и объеме диссертации.

В первой главе представлен литературный обзор основных направлений повышения активности и стабильности Pt-содержащих катализаторов для низкотемпературных ТЭ. Подробно обсуждаются пути повышения их активности, в том числе, и за счет легирования Pt различными d-металлами и формирования HЧ со структурой «Pt-оболочка – M-ядро». Проанализированы возможные причины позитивного влияния различных факторов на каталитическую активность материалов. Рассмотрены основные методы синтеза платиносодержащих НЧ на углеродном носителе, проанализированы возможности влияния состава растворителя на состав и структуру материалов, получаемых методами жидкофазного синтеза. Обсуждена возможность управления микроструктурой НЧ путем проведения термической и коррозионной постобработки катализаторов. Рассмотрены методы оценки каталитической активности в PBK и определения ЭХАП Pt-M/C материалов.

Во второй главе даны сведения об исходных реагентах, представлены методики синтеза и постобработки Pt-M/C материалов. При синтезе были использованы органические растворители: этиленгликоль (ЭГ), диметилсульфоксид (ДМСО), глицерин (Г), этанол (Э), удовлетворяющие ряду требований, среди которых: хорошая смачиваемость углеродного носителя; доступность; стабильность в условиях синтеза; хорошая растворимость солей (прекурсоров) металлов, используемых для синтеза. Описаны физико-химические методы изучения состава и структуры катализаторов, электрохимические методы оценки их активности. Для проведения электрохимических исследований использовали потенциостаты IPC-Pro (Вольта, Россия), бипотенциостат Pine AFCBP1 (Pine Research Instruments, USA) в сочетании с вращающимся дисковым электродом. Для изучения структуры материалов на разных уровнях её организации использовали методы рентгенографии и просвечивающей электронной микроскопии (ПЭМ). Состав материалов определяли методами рентгенофлуоресцентной спектроскопии (ARL OPTIM'X) и термогравиметрии.

В третьей главе обсуждаются результаты изучения состава, структуры и электрохимического поведения синтезированных Pt/C и Pt₃Ni/C материалов. Расчетная массовая доля металлической компоненты в катализаторах составляла 30%. Пониженная (по сравнению с теоретически ожидаемой) загрузка Pt (табл. 1) обусловлена неполным осаждением НЧ на углеродный носитель. Этот факт может быть связан с отталкиванием одноименно заряженных внешней части сольватной оболочки НЧ и поверхности микрочастиц углеродного носителя.

Таблица 1.

Некоторые характеристики синтезированных Pt/C и Pt-Ni/C катализаторов в зависимости от состава двухкомпонентного органического растворителя

Образец	Растворитель	Объемные со-	W(Pt+Ni),	Состав	Размеры	Параметр
		отношения	% масс	Образца	ОКР	решетки,
		компонентов			<d<sub>111>,</d<sub>	а,
		растворителя			HM	Å
P1	ЭГ-ДМСО	1:5	21,6	Pt/C	-	3,92(3)
P2	ЭГ-ДМСО	5:1	24,5	Pt/C	1,4	3,92(7)
P3	Г-Этанол	1:5	27,2	Pt/C	4,3	3,92(8)
P4	Г-Этанол	5:1	12,3	Pt/C	2,4	3,93(8)
P5	Г-ДМСО	1:5	15,3	Pt/C	-	3,93(9)
P6	Г-ДМСО	5:1	24,8	Pt/C	1,2	3,94(2)
PN1	ЭГ-ДМСО	1:5	24,5	Pt ₇₆ Ni ₂₄ /C	1,4	3,87(6)
PN2	ЭГ-ДМСО	5:1	25,6	Pt79Ni21/C	1,6	3,87(6)
PN3	Г-ДМСО	1:5	26,2	Pt73Ni27/C	2,6	3,88(3)
PN4	Г-ДМСО	5:1	14,1	Pt ₇₆ Ni ₂₄ /C	2,6	3,86(8)
PN5	Г-Этанол	1:5	17,9	Pt ₇₉ Ni ₂₁ /C	3,0	3,88(8)
PN6	Г-Этанол	5:1	21,6	Pt ₇₈ Ni ₂₂ /C	3,8	3,90(3)

Согласно данным рентгенофлуоресцентного анализа (табл. 1), состав всех Pt-Ni материалов близок к ожидаемому - Pt₃Ni. Для катализаторов, полученных из систем на основе растворителей Γ -Э 5:1 и Γ -ДМСО 1:5 характерна наименьшая массовая доля металлической компоненты (табл. 1). Массовая доля Pt в этих образцах меняется в пределах от 12% для образца P4 до 17,9% в случае Ni-содержащего сплава PN3. Высокая загрузка металлической компоненты характерна в случае использования при синтезе двух составов смесей ЭГ и ДМСО. Для остальных двухкомпонентных растворителей эффективность осаждения HЧ Pt и Pt-Ni заметно различается. Средний размер HЧ Pt и платинового сплава был рассчитан по данным рентгенографического анализа (рис. 1) по уравнению Шеррера. Для образцов, полученных в системе с преобладанием ЭГ, средний размер кристаллитов составил - 1,4 нм и 1,6 нм, соответственно, для Pt/C и Pt₃Ni/C материалов.

материалов, полученных из систем на основе ЭГ-ДМСО1:5 (Р1 и РN1) и ЭГ-ДМСО 5:1 (P2 и PN2)

Для систем с преобладанием **ДМСО** В качестве основного нента растворителя определить средний размер кристаллитов Pt/C материала не удалось.

Как правило, кристаллиты Pt имеют меньший размер, чем кристаллиты Pt₃Ni. При этом в смесях, содержащих ЭГ, различия в размерах моно- и биметаллических кристаллитов невелики.

Формирование твердого pacтвора в биметаллических НЧ Рt₃Ni подтверждается закономерным уменьшением параметра кристалли-

ческой решетки по сравнению с таковым для чистой Pt (табл. 1). В то же время, расчет, проведенный по закону Вегарда на основе предположения о формировании равномерного твердого раствора Ni в Pt, показал, что концентрация металлического Ni заметно меньше ожидаемых 25% ат.. Это может быть обусловлено как неоднородным распределением атомов Ni в HЧ (кластерным строением НЧ), так и параллельным образованием оксидов/гидроксидов Ni,

вольтамперограмм (ЦВА), с последующей стабилизацией электродных

декорирующих поверхность металлических НЧ. Определение ЭХАП проводи-30 20 10 0 −10 −20

3 цикл

25 цикл

Рис.2 Изменение вида ЦВА Pt/С материала в процессе стандартизации электрода (электролит 1М H₂SO₄).

характеристик материала (рис. 2).

E, B(CB)

0,5

-30

-40

Так, если на третьем цикле пики водородной области выражены очень слабо, то уже на 25 цикле характерные для Pt пики адсорбции и десорбции сильно и слабо связанных форм Н наблюдаются отчетливо (рис. 2).

Следует отметить некоторые особенности пиков окисления хемосорбированного СО для Pt-Ni материалов, полученных из систем Г-ДМСО 1:5 (PN3) и Г-Э 1:5 и 5:1 (PN5 и PN6, соответственно). ЦВА данных материалов представлены на рис. 3. Для них характерно наличие двух пиков окисления СО.

Значения ЭХАП каждого из катализаторов, рассчитанные 1) по количеству электричества, затраченному на электрохимическую десорбцию водорода;

7

2) по полусумме количеств электричества, затраченных на электрохимические адсорбцию и десорбцию водорода и 3) по количеству электричества, затраченному на электрохимическую десорбцию СО, мало отличаются друг от друга (табл. 2).

СО на катализаторах, полученных в системе Г-ДМСО 1:5(1) и Г-этанол 1:5 и 5:1

Для количественной оценки степени агломерации НЧ использовали соотношение $K=S_{reom}/S_{ax}$ (отношение геометрически рассчитанной удельной площади поверхности и ЭХАП, измеренной экспериментально). «Геометрическую» площадь поверхкатализаторов рассчитывали ности исходя из упрощенной геометрической модели, основанной на предположении о сферической (полусферической) форме НЧ и отсутствии их агломерации. В этом случае S_{геом} = $6 \times 10^{3} / (\rho \times D)$ где: ρ – плотность Pt (21,4 Γ/cm^{3}), D – средний диаметр HЧ, нм. Величина К показывает во сколько

раз измеренная площадь поверхности меньше, чем её предельное значение, которое может быть достигнуто при данном размере НЧ. Судя по значени-

ям К, наименее выражена агломерация в материалах РЗ, Р4, PN5 и PN6, в которых либо понижена массовая доля металлической компоненты (Р4 и PN6), либо кристаллиты имеют сравнительно большой размер (РЗ, PN5 и PN6).

Таблица 2.

пекоторые характеристики исследуемых тис и тазили с матери						
Образец	D _{ср} , нм	ЭХАП _{СО} ,	ЭХАП _н ,	ЭХАП _{1/2H} ,	$K=S_{reom}/\Im XA\Pi_{co}$	
		м ² /г(Pt)	м ² /г(Pt)	м ² /г(Pt)		
1	2	3	4	5	6	
P1	-	40±2	39±2	39±2	6,96	
P2	1,4	38±2	37±2	37±2	5,26	
P3	4,3	29±2	28±2	28±2	2,27	
P4	2,4	56±2	56±2	54±2	2,09	
1	2	3	4	5	6	
P5	-	27±2	25±2	25±2	10,52	
P6	1,2	18±2	18±2	17±2	13,24	
PN1	1,4	36±2	34±2	35±2	5,56	
PN2	1,6	29±2	26±2	27±2	6,20	
PN3	2,6	25±2	25±2	24±2	4,39	
PN4	2,6	14±2	15±2	14±2	7,58	
PN5	3,0	33±2	32±2	33±2	2,79	
PN6	3,8	38±2	37±2	37±2	1,93	

Некоторые характеристики исследуемых Pt/C и Pt₃Ni/C материалов

В этих материалах среднее расстояние между НЧ заметно больше, чем в катализаторах с более высокой загрузкой металла или меньшим размером НЧ (кристаллитов), что понижает вероятность их агрегации.

Минимальное значение K_a, обусловленное минимальным перекрыванием НЧ, характерно для PN6, где действуют оба выше перечисленных фактора. В целом, наблюдается достоверное снижение K_a с увеличением среднего размера кристаллитов (среднего расстояния между НЧ) (табл. 2). Предположение о значительной степени агломерации НЧ полученных материалов подтверждается данными ПЭМ (рис. 4).

Рис.4 Фотографии ПЭМ и гистограммы распределения частиц по размеру, полученные для Pt/C материалов.

Следует отметить, что «размерный» эффект увеличения ЭХАП по мере уменьшения D_{ср} преобладает над противоположным по влиянию эффектом усиления степени агрегации. Для изучения кинетики реакции электровосстановлекислорода на ния вращаюдисковом электроде щемся использовали уравнение Коутецкого-Левича

$$1/\dot{i} = 1/\dot{i}_{\kappa} + 1/\dot{i}_{\pi} = 1/\dot{i}_{\kappa} + 1/Bn\omega^{0.5}$$

B = 0.62FD^{2/3}v^{-1/6}c

где і – ток на дисковом электроде; i_{κ} – кинетический ток; i_{π} – диффузионный ток; ω – скорость вращения дискового электрода (рад/с); n – количество электронов, участвующих в электрохимической реакции;

F – постоянная Фарадея, Кл/моль; D – коэффициент диффузии, см²/с; v – кинематическая вязкость электролита, см²/с; с – концентрация кислорода в растворе.

Кинетика РВК была изучена для 4-х Pt/C катализаторов: P-1, P-3, P-5, P-6, характеризуемых различным размером НЧ (кристаллитов) - от 1,0 до 4,3 нм и массовой долей Pt от 21,6 до 27%. Для сравнения были изучены три Pt₃Ni/C электрокатализатора - PN-1, PN – 3, PN-6.

Типичные вольтамперограммы с линейной разверткой потенциала полученные при различных скоростях вращения дискового электрода представлены на рис. 5. В табл. 3 сведены данные по активности в РВК исследуемых катализаторов с различной микроструктурой.

На основании данных таблицы 3 синтезированные электрокатализаторы можно условно разделить на две группы: с низких масс–активностью (РЗ и РNЗ), и с высокой масс–активностью. Среди последних наибольшие характеристики демонстрируют катализаторы Р1 и Р5. Отсутствие существенного активирующего влияния никеля на электровосстановление кислорода находится в определенном противоречии с рядом литературных источников, посвященных сравнительному изучению каталитической активности Pt/C и Pt-Ni/C электрокатализаторов.

Таблица 3.

Наименование катализатора	W(Pt+Ni), % масс	ЭХАП, M^2/Γ_{Pt}	D _{ср} , нм	j _{масс} , (А/ _{ГРt})	J _{уд} , (А/м ² _{Pt})	n	
P-1	21,6	40±2	-	99,8	2,48	3,9	
P-3	27,2	29±2	4,3	29,0	1,01	3,8	
P-5	15,3	27±2	-	101,4	3,8	3,8	
P-6	24,8	18±2	1,2	87,7	4,81	3,9	
PN-1	24,5	36±2	1,4	92,1	2,57	4,1	
PN-3	26,1	25±2	2,6	41,8	1,7	4,0	
PN-6	21,6	38±2	3,8	86,9	2,28	3,9	

Сводные результаты электрохимических исследований PtM/С катализаторов на ВЛЭ

 D_{cp} – средний размер кристаллитов, нм; ЭХАП - площадь электрохимически активной поверхности, M^2/P_{Pt} ; j_{macc} – удельный ток в расчете на массу металлов (A/P_{Pt}), j_{yden} – удельный ток в расчете на площадь поверхности металлов (A/M^2_{Pt}); n - число электронов в PBK. Значения токов вычислены при потенциале 0,7 В и скорости вращения электрода

Рис.5 Вольтамперограммы с линейной разверткой потенциала, измеренные при различных скоростях вращения дискового электрода для Pt/C материалов в среде 0,1 М HClO₄, скорость развертки потенциала 20мB/c.

1000 об/мин

Это противоречие может быть объяснено низкой степенью легирования платины и, как следствие, низкой однородностью поверхности металла.

Согласно данным табл. 2 параметр кристаллической решетки полученных Pt₃Ni/C материалов соответствует диапазону от 3,868 до 3,903 Å, в то время как параметр решетки объемного сплава того же состава равен 3,820 Å. По-видимому, большая часть никеля входит в состав катализатора в виде аморфного оксида. Согласно расче-

ту, проведенному на основании закона Вегарда, мольная доля металлического Ni в двухкомпонентных HЧ составляет от 8 до 18%.

В четвертой главе обсуждается методика синтеза электрокатализаторов с неоднородным распределением компонентов, изучается влияние методов постобработки на состав, структуру и электрохимическое поведение Pt-Ag/C. При синтезе Ag/C, предназначенного для последующего получения Pt-Ag/C, задача состояла в получении материала с массовой долей Ag 15% при D в диапазоне 4 - 10 нм. Так же, как и в случае синтеза Pt/C и Pt₃Ni/C материалов, при поиске оптимальных условий первоначально исследовали влияние состава смешанного растворителя на состав/структуру Ag/C. В качестве компонентов растворителя использовали ЭГ, Г и ДМСО.

Согласно результатам, рентгеновской дифрактометрии, вариация природы компонентов и состава исследованных растворителей не оказала желаемого влияния на размер формируемых НЧ (кристаллитов) Аg, в отличие от эффекта, ранее наблюдавшегося для НЧ Pt. Средний размер кристаллитов Ag, формируемых на углероде, составил 15-25 нм. Исходя из вышеприведенных данных, было принято решение о введении в маточный раствор, используемый для синтеза Ag/C, 10% ат. Pt (IV) (по отношению к содержанию Ag⁺ в растворе), в качестве «затравки» для облегчения нуклеации ядер. Данные о среднем размере кристаллитов и о составе использованного двухкомпонентного растворителя приведены в табл.4. Расчет показал уменьшение D более чем на 40% по сравнению с материалами, полученными без «затравки» платины. Это обусловлено снижением энергии активации зародышеобразования при соосождении атомов платины и серебра.

Для формирования Ag_{0.9}Pt_{0.1}@Pt/C катализаторов, характеризующихся неоднородным распределением компонентов, были исследованы две методики синтеза материалов со структурой НЧ «оболочка – ядро».

<u>Методика 1.</u> Формирование и выделение Ag/C из раствора на основе смешанного растворителя (G-DMSO 2:3), с последующим химическим «осаждением» платины (формированием оболочки) из раствора прекурсора Pt (IV) на основе аналогичного растворителя.

<u>Методика 2.</u> Формирование Ag/C в растворе на основе смешанного растворителя (G-DMSO 2:3) с последующим добавлением прекурсора платины и её химическим «осаждением» (формированием оболочки) в том же растворе.

Основным отличием приведенных выше методик синтеза является порядок внесения прекурсоров металлов в маточный раствор. В соответствии с первой методикой формирование металлуглеродного материала с неравномерным распределением металлических компонентов, происходит в два последовательных этапа.

Таблица 4.

Массовая доля металла и средний размер Pt_{0.1}Ag_{0.9} кристаллитов (HЧ) в Pt_{0.1}Ag_{0.9}/С материалах, полученных при проведении синтеза в растворах на основе различных двухкомпонентных растворителей.

Образец	Состав и объемное соотношение компонен-	ω(Ag+Pt),%	D _{cp} ,нм
	тов растворителя		
S-5	Г-ДМСО 1:5	13,5	7,5
S-6	Г-ДМСО 2:3	13,0	5,8
S-7	Г-ДМСО 3:2	15,5	6,3
S-8	Г-ДМСО 5:1	13,2	5,9

На первом этапе формируется металлическое ядро. После чего получен-

Рис.6. Электрохимический профиль предобработки Ag/C материала

ный «полупродукт» отделяется от маточного раствора, промывается, высушивается. Последующее формирование оболочки происходит на продукте, полученном на первой стадии синтеза. В рамках второй методики формирование Pt оболочки проводится на свежеполученных ядрах Ag, без предварительной осушки Ag/C.

Полученные по описанным выше методикам материалы характеризуются уменьшением среднего размера кристаллитов (3,5нм для методики 1 и 4,7нм для методики 2).

процессе реализации 100 последовательных циклов B развертки потенциала на анодной ветви ЦВА Ag/C материала при потенциале около 0.7 В наблюдается пик (рис. 6), соответствующий растворению Ag. В процессе циклирования интенсивность максимума уменьшается, а потенциал смещается в область меньших значений. В свою очередь, на катодной ветви ЦВА наблюдается пик восстановления Ag⁺ при потенциале около 0.58 В. Повидимому, часть ионов Ag⁺, образующихся при анодной поляризации электрода, не успевает диффундировать из нанесенного на электрод пористого каталитического слоя в объем раствора и восстанавливается до металла в последующей катодной части цикла. Растворение серебра полностью прекращается к 25 циклу. Последующее циклирование Ag/C материала дает типичный электрохимический профиль углеродного носителя.

По количеству электричества, затраченному на растворение серебра из Ag/C материала, был произведен расчет количества металла, растворившегося в процессе циклирования. При этом учитывалось и количество Ag, переосажденного в катодной части каждого цикла. Проведенный расчет показал, что в диапазоне потенциалов, соответствующих анодному пику, растворяется только 70% находящегося в материале металла. Остальные 30% Ag растворяются в процессе регистрации ЦВА при больших значениях потенциалов. По результатам расчета общее количество растворившегося металла соответствовало 95% серебра, первоначально находящегося в Ag/C материале. Таким образом, примененная методика расчета позволила с приемлемой точностью оценить количество Ag, растворяющегося в процессе циклирования. Аналогичный метод был применен для расчета количества (массы) Ag, растворяющегося в процессе циклирования биметаллических Ag@Pt/C материалов с предположительной структурой «оболочка – ядро».

ЦВА Аg_{0.9}Pt_{0.1}@Pt/C катализаторов, полученных по обеим вышеописан-

Рис.7 ЦВА материала PS-1. 0.1М HClO₄. Скорость развертки потенциала 100мВ/с. На вставке приведена зависимость изменения количества электричества, затраченного на растворение серебра, от номера цикла.

ным методикам, имеют сходный вид, в целом характерный для широкого спектра Pt-M/C катализаторов с достаточно высоким содержанием Pt (рис.7). В то же время при потенциалах около 0,7 В на анодной ветви ЦВА наблюдаются пики, соответствующие растворению Ад. Высокие значения токов, уменьшающиеся в течение первых циклов, наблюдающиеся на анодной ветви ЦВА в кислородной области (положительнее 0.8 В), частично также могут быть обусловлены процессом растворения Ag.

Очевидно, что наблюдаемые особенности ЦВА обусловлены наличием атомов Ag на поверхности сформированных HЧ. С учетом использованных методик синтеза такая ситуация может быть связана с наличием на поверхности носителя индивидуальных НЧ Ag, сростков НЧ серебра и платины и частиц Ag-ядро – Pt-оболочка с "дырявой" оболочкой. После стандартизации поверхности Ag_{0.9}Pt_{0.1}@Pt/C материалов был проведен расчет ЭХАП. Значение такой площади для материала PS-2 несколько больше, чем для PS-1.

С другой стороны, приближенный расчет, проведенный по закону Фарадея, показал, что в процессе циклирования растворяется не более 10% содержащегося в материале Ag. Это косвенно подтверждает наличие значительного числа НЧ со структурой «оболочка ядро», из которых растворение Ag не происходит из-за защитной оболочки Pt. Такие НЧ могут быть сформированы изначально, в процессе синтеза или же они образуются из НЧ сплава после селективного растворения атомов Ag с поверхности НЧ. К сожалению, по результатам электрохимических измерений невозможно точно рассчитать долю НЧ со структурой ядро-оболочка, полученных непосредственно в результате синтеза.

С целью оптимизации микроструктуры катализатора, а именно - увеличения доли частиц, характеризующихся неравномерным распределением Ag и Pt, синтезированный материал Ag_{0.9}Pt_{0.1}@Pt/C с предположительной структурой HЧ «оболочка-ядро» был подвергнут следующим видам постобработки:1) часть материала выдерживали в течение 1 часа в 1М растворе HNO₃ (t=25°C), фильтровали, высушивали, затем нагревали в атмосфере Ar до 250°C и выдерживали при этой температуре 1 час (далее полученный катализатор обозначен как Ag@Pt/C_{cor/term}). 2) Другую часть материла подвергали термической обработке при 250°C в течение 1 часа (Ar), после чего проводили коррозионную обработку (1M HNO₃, 1час, 25°C) (Ag@Pt/C_{term/cor}). Сравнение среднего размера кристаллитов, рассчитанного по уравнению Шеррера (табл. 6), показывает, что проведение постобработки приводит к его увеличению. Это явление может быть обусловлено коалесценцией части мелких металлических НЧ с образованием более крупных кристаллитов, а также диссипацией мелких НЧ в процессе коррозионной разработки. Следует отметить, что ограниченность применения уравнения Шеррера для расчета размера биметаллических соге-shell НЧ, не позволяет говорить об изменении размера кристаллитов в результате постобработки как о твердо установленном факте. Здесь необходимо применение метода ПЭМ.

Таблица 6.

1			5	6		
Образец	Эбразец W(Me),		E _{max} , B	Максимальный ток	ЭХАП,	Q _{суммарное}
	%			при Е _{тах,} mA/г	м ² /г	, мкКл
Ag _{0.9} Pt _{0.1} @Pt/C	28,2	3,0±0,3	0,738	107,11	57±2	1602,7
Ag@Pt /C _{cor/term}	19,2	4,0±0,3	0,715	35,723	62±2	417,3
Ag@Pt /Cterm/cor	17,7	5,0±0,3	0,668	44,78	69±2	547,4

Некоторые характеристики полученных Ag@Pt/C материалов

Электрохимический профиль постобработанных Ag@Pt/C материалов в целом аналогичен профилю чистой Pt. Тем не менее, при потенциале порядка 0.7В на анодной ветви ЦВА наблюдаются пики, соответствующие растворению чистого Ag. По мере стандартизации поверхности в процессе циклирования интенсивность пиков уменьшается, а затем они вообще исчезают.

Суммарное количество растворенного серебра было рассчитано с учетом растворения серебра в кислородной области ЦВА. Проведение постобработки полученных материалов приводит к увеличению формального значения D, и увеличению ЭХАП. Исходя из элементарных рассуждений увеличение формального значения D, должно приводить к уменьшению значения ЭХАП. Данное несовпадение теоретических представлений и экспериментально полученных данных, можно объяснить существованием в исходном образце большой доли HЧ, поверхность которых в значительной степени блокирована серебром, в результате чего часть поверхности «выпадает» из электрохимического процесса и не учитывается при расчете ЭХАП.

Проведение постобработки приводит к растворению избытка поверхностного серебра и разблокированию поверхности платины. В предельном случае в результате подобной обработки получаемых материалов возможно формирование полых НЧ (hollow particles), вызывающих большой интерес с точки зрения изучения их морфологической стабильности.

ПЭМ является прямым методом, способным подтвердить наличие НЧ со структурой ядро – оболочка в синтезированных нами Ag@Pt/C электрокатализаторах. К сожалению, по результатам ПЭМ (рис. 8), однозначно установить наличие НЧ характеризующихся структурой «оболочка-ядро» не удалось, что может быть обусловлено малым размером металлических НЧ изучаемых материалов. Уменьшение среднего размера НЧ в результате постобработки, наблюдаемое на микрофотографиях (рис. 9), коррелирует со значениями ЭХАП, рассчитанными по ЦВА стандартизированных материалов. Противоположный характер изменения D, рассчитанного по уравнению Шеррера, скорее всего, говорит о весьма грубом характере такого расчета для двухфазных биметаллических систем, в том числе и с core-shell структурой НЧ. В этом случае ПЭМ, конечно же, дает более точные результаты.

Рис.8. ПЭМ изображения Ag@Pt/C материалов до и после обработки.

Как и в случае Pt/C и Pt₃Ni/C эдектрокатализаторов, изучение кинетики PBK на Pt-Ag/C материалах прометодом вращающегося водилось Электролит: дискового электрода. 0,1М НСЮ4. Наибольшие значения удельных токов продемонстрировали Ag@Pt/C материалы, прошедшие термическую и коррозионную обработку (табл.7). Завышенное, по сравнению с ожидаемым, расчетное значения числа электронов (более 4х), затраченных на электровосстановление O₂ в случае Ag@Pt/C катализаторов (табл.6), может быть обусловлено влиянием продолжающейся реорганизации поверхности металла на величину измеряемого тока. По величинам масс-активности в РВК постобработанные платино-серебряные катализаторы близки к лучшим образцам Pt/C и Pt₃Ni/C катализаторов (табл. 3), однако существенно уступают им по удельной (А/м²_{Pt}) активности.

Высокие абсолютные значения ЭХАП Ag@Pt/C катализаторов и установленная возможность улучшения структурных характеристик посредством постобработки, делают их объектами, интересными для дальнейшего исследования. Негативным аспектом поведения, затрудняющим практическое применение, является продолжительность процессов реорганизации микроструктуры, характерная для Pt-Ag/C катализаторов.

Таблица 7.

Наименование катализатора	Загрузка, %	ЭХАП, M^2/Γ_{Pt}	D _{ср} , нм	j _{масс} , (А/г _{Рt})	ј _{удел} (А/м ² _{Pt})	n
PtAg/C	26,1	52±2	4,0±0,3	48,31	0,93	3,6
Ag _{0.9} Pt _{0.1} @Pt/C	25,3	57±2	3,0±0,3	69,25	1,21	4,2
Ag@Pt/C _{term/cor}	17,7	70±2	5,0±0,3	88,07	1,40	4,8
Ag@Pt/C _{cor/term}	19,2	63 ±2	4,0±0,3	92,21	1,33	4,3

Сводные результаты электрохимических исследований Pt-AgC катализаторов на ВЛЭ.

где: $j_{-масс}$ — удельный ток в расчете на массу металлов (A/r_{Pt}), j_{yden} — удельный ток в расчете на площадь поверхности платины (A/m_{Pt}^2). Значения токов вычислены при потенциале 0,7 В и скорости вращения электрода 1000 об/мин.

выводы

1. Показано, что изменение природы компонентов и состава двухкомпонентного органического растворителя, используемого в процессе жидкофазного боргидридного синтеза Pt/C и Pt₃Ni/C наноструктурных электрокатализаторов, оказывают существенное влияние на средний размер металлических HЧ (кристаллитов), а также на эффективность их адсорбции микрочастицами углеродного носителя.

Наблюдаемые эффекты влияния состава растворителя на процессы нуклеации и роста НЧ, а также на процессы их сорбции углеродным носителем могут быть связаны с различием: 1) условий адсорбции компонентов раствора, включая прекурсоры металлов, на поверхности носителя и растущих НЧ, 2) состава сольватных оболочек НЧ, 3) поверхностной энергии на границах жидкой и твердых (углерод, металл) фаз, 4) окислительно - восстановительных потенциалов реагирующих веществ.

2. Уменьшение размера НЧ Рt или Pt-Ni сплава, а также увеличение массовой доли металлической компоненты в катализаторе приводит к усилению процессов агрегации НЧ. Адгезия маленьких частиц к поверхности углеродного носителя меньше, а подвижность – больше, чем для частиц большего размера. В результате, эффект увеличения ЭХАП, обусловленный уменьшением среднего размера НЧ, в значительной степени компенсируется эффектом усиливающейся агрегации НЧ, обусловливающим снижение совокупной поверхности металла. Вклад каждого из этих эффектов зависит от состава маточного раствора, в котором происходит синтез электрокатализаторов.

3. По результатам вольтамперометрических измерений синтезированные Pt/C и Pt₃Ni/C электрокатализаторы условно можно разделить на две группы: катализаторы с высокой и катализаторы с низкой масс - активностью. В целом синтезированные Pt/C материалы продемонстрировали большую активность в PBK, нежели Pt₃Ni/C катализаторы. Отсутствие заметного влияния атомов Ni на активность катализаторов в PBK объясняется низкой степенью легирования Pt, присутствием значительной доли никеля виде аморфного оксида.

4. Для всех исследованных Pt/C, Pt₃Ni/C и Pt-Ag/C катализаторов характерен четырехэлектронный механизм протекания PBK.

5. Методами последовательного химического восстановления соединений серебра, а затем платины в углеродных суспензиях, приготовленных на основе двухкомпонентных растворителей, получены нанесенные Pt-Ag катализаторы, в которых поверхностные слои металлических НЧ обогащены Pt. При среднем размере НЧ около 3 нм электрохимически активная площадь поверхности катализаторов, в зависимости от условий обработки, составила 57 – 70 м²/г(Pt).

6. Показано, что проведение коррозионной и термической постобработки Ag@Pt/C материалов приводит к выщелачиванию части серебра, уменьшению среднего размера металлических НЧ и увеличению ЭХАП катализаторов.

7. В первых циклах стандартизирующего циклирования Ag@Pt/C материалов наблюдается процесс анодного растворения Ag. При этом даже для Ag@Pt/C катализатора в состоянии «как получено» анодное растворение Ag из собственной фазы заканчивается, когда его содержание в катализаторе состав-

ляет примерно 90 % от исходного. Это является косвенным подтверждением наличия в исследуемых Ag@Pt/C катализаторах (или формирования в процессе растворения) значительной доли НЧ со структурой "Pt-оболочка - Ag-ядро".

Основное содержание диссертации изложено в следующих публикациях:

1. Pt-M/C (M = Cu, Ag) electrocatalysts with inhomogeneous distribution of metals in the nanoparticles / V. E. Guterman, S. V. Belenov, A. Yu. Pakharev, M. Min, N. Yu. Tabachkova, E. B. Mikheykina, L. L. Vysochina, T. A. Lastovina // Int. J. of Hydrogen Energy. -2016. -V. 41, No 3. -P. 1609-1626.

2. Пахарев А. Ю. Pt@Ag/C электрокатализаторы с неоднородным распределением металлов в наночастицах / А. Ю. Пахарев, Н. Ю. Табачкова, В. Е. Гутерман // Конденсированные среды и межфазные границы. – 2015. – Т. 17, №2. – С. 208–218.

3. Guterman V. E. Microstructure and size effects in Pt/C and Pt3Ni/C electrocatalysts synthesized in solutions based on binary organic solvents / V. E. Guterman, A. Y. Pakharev, N. Y. Tabachkova //Applied Catalysis A: General. – 2013. – V. 453. – P. 113-120.

4. Microstructure of Pt/C and Pt-M/C materials and catalytic processes on their surface / V. E. Guterman, S. V. Belenov, N. Yu. Tabachkova, L. L. Vysochina, V. V. Krikov, A. Yu. Pakharev, A. A. Alekseenko // International Conference «Ion transport in organic and inorganic membranes», Conference Proceedings, Krasnodar, 2-7 June 2014. – «Bestprint», 2014. – P. 87-89.

5. Paharev A. Yu. Influence of post treatment on the microstructure of Ag@Pt/C electrocatalysts / A. Yu. Paharev, V. E. Guterman // International conference «Ion transport in organic and inorganic membranes», Conference proceedings, Krasnodar, 2-7 June 2014. – «Bestprint», Krasnodar, 2014. – P. 161-162.

6. Платиносодержащие наноструктурные электрокатализаторы для низкотемпературных топливных элементов: старые проблемы и новые решения / В. Е. Гутерман, С. В. Беленов, А. Ю. Пахарев, Н. Ю. Табачкова, Е. Б. Михейкина, Л. Л. Высочина // 12-е Межд. совещание «Фундаментальные проблемы ионики твердого тела», Черноголовка, 3-5 Июля 2014. – Черноголовка: Институт проблем химической физики РАН, 2014. – С. 94.

7. Пахарев А. Ю. Рt@Ag/С электрокатализаторы, характеризующиеся неравномерным распределением компонентов в наночастицах / А. Ю. Пахарев, В. Е. Гутерман, Н. Ю. Табачкова // Труды VII всероссийской школы-семинара студентов, аспирантов и молодых учёных по направлению «Диагностика наноматериалов и наноструктур» Нанодиагностика, Рязань,15-19 сентябрь 2014. – Изд-во РГРТУ, 2014. – С.125-129.

8. Post-treatment effects to the properties of core-shell Pt-M/C nanostructured electrocatalyst for PEMFC / V. E. Guterman, S. V. Belenov, A. Y. Pakharev, L. L. Vysochina, H. B. Mikheikina, N. Yu. Tabachkova, T. A. Lastovina // XII Int. Conference on Nanostructured Materials NANO 2014, Moscow, 13-18 July 2014. – Lomonosov Moscow State University, Moscow, 2014. – P. 652.

9. Pt/C и PtM/C электрокатализаторы: аттестация и управление микроструктурой на разных уровнях её организации / В. Е. Гутерман, С. В. Беленов, А. Ю. Пахарев, Н. Ю. Табачкова, Л. А. Бугаев, В. В. Прядченко // 10-ая международная конференция. «Физико–химические проблемы возобновляемой энергетики», Черноголовка, 11-14 октября 2014. – Черноголовка, 2014. – С. 101.

10. PtM/С электрокатализаторы: повышение активности через управление микроструктурой / Л. Л. Высочина, Е. Б. Михейкина, А. Ю. Пахарев, С. В. Беленов, Т. А. Ластовина, И. Н. Новомлинский, С. А. Киракосян, В. Е. Гутерман // XI международный семинара по магнитному резонансу (Спектроскопия, Томография и Экология), Ростов-на-Дону. – 9-14 сентября 2013. – Изд-во ЮФУ, Ростов-на-Дону, 2013. – С. 94.

11. Platinum-based electrocatalysts for low-temperature fuel cells: problems of activity and stability / V. E. Guterman, S. V. Belenov, T. A. Lastovina, A. Yu. Paharev, N. Sobgaida // Int. Conference "Ion transport in organic and inorganic membranes", Krasnodar, 2-7 June 2013. – «Bestprint», 2013. – P. 109-110.

12. Bimetallic PEMFC electrocatalyst based on M-core–Pt-shell nanoparticles / V. E. Guterman, T. A. Lastovina, H. B. Pahomova, N. Yu. Tabachkova, A. Yu. Paharev, L. L. Vysochina, S. V. Belenov, M. A. Evstigneeva // BIT's 3rd Annual World Congress of Nanoscience & Nanoechnology (Nano-S&T), Xi'an, 26-28 September 2013. – Xi'an, 2013. – P. 256.

13. PEMFC electrocatalyst based on M-core – Pt-shell nanoparticles / V. E. Guterman, T. A. Lastovina, H. B. Pahomova, N. Yu. Tabachkova, A. Yu. Paharev // Int. Conference «Ion transport in organic and inorganic membranes», Krasnodar, 28 May – 02 June 2012. – «Bestprint», 2012. – P. 86-87.

14. Supported electrocatalysts based on M-core – Pt-shell and hollow type nanoparticles / V. E. Guterman, T. A. Lastovina, E. B. Pakhomova, A. Yu. Paharev, S. S. Manokhin, N. Yu. Tabachkova // Abstracts of 63^d Annual ISE Meeting, Prague 19-24 August 2012.

15. Optimization of Pt-M/C electrocatalysts for polymer electrolyte membrane fuel cells / V. E. Guterman, S. V. Belenov, L. L. Vysochina, T. A. Lastovina, H. B. Pahomova, A. Yu. Paharev // Int. Conference «Ion transport in organic and inorganic membranes», Krasnodar, 6-7 June 2011. – «Bestprint», 2011. – P. 66-67.

16. Возможности оптимизации микроструктуры Pt/C и Pt-M/C наноструктурных электрокатализаторов на разных уровнях ее организации / В. Е. Гутерман, С. В. Беленов, И. Н. Леонтьев, Т. А. Ластовина, Н. Ю. Табачкова, А. Ю. Пахарев, Е. Б. Пахомова // Сборник материалов VIII международной конференции «Фундаментальные проблемы электрохимической энергетики», Саратов, 3 – 7 октября 2011. – Изд-во СГУ, Саратов, 2011. – С. 137-139.

17. Влияние природы компонентов и состава бинарного растворителя на микроструктуру и электрохимически активную площадь поверхности синтезированных Pt/C и Pt3Ni/C материалов / А. Ю. Пахарев, В. Е. Гутерман, Ю. В. Кабиров, О. Берг, А. А. Поспелов // Материалы V всероссийской конференции «Физико-химические процессы в конденсированных средах и на межфазных границах», Воронеж, 3-8 октября 2010. – Изд-во ВГУ, 2010. – С. 129-132.

18. Pt-M/C catalysts for oxygen electroreduction: wet synthesis, structure, activity / V. E. Guterman, I. N. Leontiev, S. V. Belenov, E. B. Pachomova, T. A. Lastovina, E. P. Fokina, A. Yu. Paharev // 9th International Frumkin Symposium: Electrochemical Technologies and Materials for 21st Century. Moscow, 24-29 October 2010. – Moscow, 2010. – P. 87.