На правах рукописи

Перепелица Алексей Сергеевич

ОПТИЧЕСКИЕ СВОЙСТВА ЛОКАЛИЗОВАННЫХ СОСТОЯНИЙ В КОЛЛОИДНЫХ КВАНТОВЫХ ТОЧКАХ СУЛЬФИДОВ КАДМИЯ И СЕРЕБРА

Специальность 01.04.05 – оптика

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Воронеж-2017

Работа выполнена в ФГБОУ ВО «Воронежский государственный университет».

Научный руководитель:	доктор физико-математических наук, профессор Овчинников Олег Владимирович
Официальные оппоненты:	Ремпель Андрей Андреевич, член-корреспондент РАН, доктор физико- математических наук, профессор, ФГБУН «Институт химии твердого тела Уральского отделения Российской академии наук», лаборатория нестехиометрических соединений, заведующий
	Наумов Андрей Витальевич, доктор физико-математических наук, доцент, ФГБУН «Институт спектроскопии Российской академии наук», отдел молекулярной спектроскопии, заведующий

Ведущая организация:	ФГБУН «Физический институт им. П.Н.Лебедева
	Российской академии наук», г. Москва

Защита диссертации состоится «<u>14</u>» декабря 2017 г. в 15 час. 10 мин. на заседании диссертационного совета Д 212.038.06 при Воронежском государственном университете по адресу: 394018, г. Воронеж, Университетская пл., д. 1, ауд. 428.

С диссертацией можно ознакомиться в библиотеке и на сайте Воронежского государственного университета http://www.science.vsu.ru/disserinfo&cand=3006.

Автореферат разослан «13» ноября 2017 г.

Учёный секретарь диссертационного совета

Дрождин Сергей Николаевич

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы

Активные исследования последних лет, посвященные разработке приемов управления оптическими свойствами структур на основе полупроводниковых коллоидных квантовых точек (КТ) различного состава (CdS, ZnS, CdSe, CdTe, InP, PbS, Ag₂S и др.), обусловлены широким диапазоном приложений, в которых получаемые закономерности могут быть использованы. Среди них фотовольтаика и фотокатализ, люминесцентное биомаркирование и сенсорика, лазерные среды и системы управления параметрами оптического излучения и пр. [1-3].

Ключевую роль во всех этих задачах играют методики и технологии создания ансамблей коллоидных КТ с заданными оптическим свойствами. Выбор технологий синтеза во многом определяет фотофизические и фотохимические процессы, происходящие в коллоидных КТ. Они зависят не только от материала полупроводника, но и состояния интерфейсов КТ, концентрации и типа дефектов, их энергетических и оптических свойств, наличия пассивирующих оболочек, стабилизирующих полимеров и т.д. [3]. Перечисленные факторы, в свою очередь, оказывают определяющую роль на длительность существования электронного возбуждения, квантовый выход люминесценции КТ, наличие нелинейнооптических свойств. Фундаментальной проблемой при этом оказываются механизмы фотопроцессов, протекающих с участием уровней структурнопримесных дефектов в КТ, которые неизбежно формируются на стадии синтеза и могут выступать, как в роли центров люминесценции, так и безызлучательной рекомбинации и др. [1,4]. Варьирование условий синтеза обеспечивает управление не только типом и концентрацией возникающих центров, но и местом их преимущественной локализации. Так, применение высокотемпературных методик синтеза с использованием высококипящих растворителей (например, триоктилфосфиноксид, ТОРО) обеспечивает их диффузию из объема КТ к Пассивация интерфейсов КТ ПАВ интерфейсам. или слоем ИЗ более широкозонного полупроводника резко снижает эффективность безызлучательной рекомбинации на уровнях поверхностных дефектов и увеличивает квантовый выход экситонной люминесценции [4]. Золь-гель синтез КТ, как правило, обеспечивает слабую экситонную заметную рекомбинационную И люминесценцию. В отдельных случаях тщательная оптимизация технологии обеспечивает высокий квантовый рекомбинационной синтеза выход люминесценции (до 90 %), сохраняя при этом преимущество стабилизации КТ в низкотоксичных, полярных средах.

Таким образом, актуально решение задач контроля структуры локализованных состояний и исследования их свойств. Важную роль в исследовании структуры

локализованных состояний играет подбор высокочувствительных и информативных методик детектирования низких концентраций структурнопримесных дефектов в КТ. Имеющиеся исследования локализованных состояний к настоящему времени сосредоточены в большей степени на изучении оптических свойств уровней дефектов, выступающих в роли центров люминесценции и процессов, обеспечивающих рекомбинационную компоненту в люминесценции КТ [5]. Свойства локализованных состояний, участвующих преимущественно в безызлучательных процессах, остаются исследованными в существенно меньшей степени [6].

В свою очередь, ряд переходов между состояниями, резонансных с падающим лазерным излучением, может обеспечивать снижение порога, при котором возникают оптические нелинейности, приводящие к ограничению оптической мощности за счет нелинейной рефракции, обратного насыщающегося поглощения, нелинейного рассеяния и т.п. При этом роль локализованных состояний в КТ для подобных процессов остается малоисследованной. Данные о свойствах локализованных состояний необходимы для установления природы мерцания люминесценции одиночных квантовых точек.

Таким образом, <u>актуальны</u> исследования в области оптической спектроскопии локализованных состояний в полупроводниковых коллоидных КТ, а также механизмов фотофизических процессов и нелинейно-оптических эффектов с их участием.

Данная работа посвящена восполнению имеющихся пробелов в данной области и имеет своей <u>целью</u> спектроскопическое исследование энергетической структуры локализованных состояний в коллоидных КТ Ag₂S и CdS, а также установление закономерностей фотофизических процессов с их участием.

Достижение поставленной цели предполагает решение следующих конкретных <u>задач</u>:

1. Разработка и обоснование методик водного синтеза диспергированных в желатине коллоидных КТ Ag₂S и CdS с размерно-зависимыми оптическими свойствами.

2. Анализ спектральных проявлений локализованных состояний коллоидных КТ Ag₂S и CdS в абсорбционных и люминесцентных свойствах.

3. Исследование энергетической структуры локализованных состояний в коллоидных КТ Ag₂S и CdS методами фото- и термостимулированной люминесценции.

4. Исследование процессов ограничения оптической мощности при резонансном возбуждении локализованных состояний коллоидных KT Ag_2S и CdS.

4

Объектами исследований служили коллоидные КТ Ag_2S (1.8 – 2.5 нм) и КТ CdS (2.2 – 4.5 нм), приготовленные водным синтезом в желатиновой матрице. Выбранные составы коллоидных КТ являются типичными представителями нестехиометрических полупроводниковых соединений, имеющих различающиеся размерно-зависимые оптические свойства и обладающих заметной концентрацией дефектов, часть из которых выступает в роли центров люминесценции. Для коллоидных КТ Ag_2S также характерно отсутствие однозначных данных о размерных эффектах в оптическом поглощении и фотолюминесценции, а также оптических свойствах локализованных состояний. Исследование КТ CdS вызвано отсутствием полноты данных о структуре локализованных состояний в КТ CdS и их природе.

Научная новизна работы

1. Разработаны оригинальные методики синтеза коллоидных КТ Ag₂S средним размером 1.8 – 2.5 нм и КТ CdS средним размером 2.2 – 4.5 нм в желатине с размерно-зависимыми оптическими свойствами.

2. Установлены новые люминесцентные свойства коллоидных КТ Ag₂S в слабой желатине, заключающиеся В размерной зависимости положения максимума ИК люминесценции возможности возбуждения И прямого соответствующих центров рекомбинации.

3. В условиях водного синтеза коллоидных КТ Ag₂S в желатине обнаружено формирование моноклинной кристаллической фазы размером кристаллитов 1.8-2.5 нм и оболочек из желатинатов серебра, обуславливающих несоответствие между размерами и оптическими свойствами.

КТ CdS 4. Для коллоидных И Ag_2S В желатине методом термостимулированной люминесценции найдены мелкие локализованные состояния глубиной 0.04 – 0.20 эВ, связанные с структурно-примесными дефектами.

5. Обнаружен эффект фотостимулированной вспышки люминесценции в коллоидных КТ CdS средним размером 2.2-4.5 нм в области квантов энергий 0.6-2.0 эВ.

6. Для ансамблей коллоидных КТ Ag₂S, диспергированных в желатине, установлено ограничение мощности оптического излучения на длине волны 660 нм с длительностью импульсов 10 мс и порогом срабатывания 2.2-3.1 мДж/см², возникающее за счет обратного насыщающегося поглощения.

Практическая ценность работы

Результаты фундаментальных исследований фотофизических процессов с участием локализованных состояний в коллоидных КТ Ag₂S и CdS открывают возможности:

- разработки приемов управления квантовым выходом люминесценции коллоидных КТ, которые обеспечат создание эффективных низкотоксичных люминесцентных маркеров;

- разработки систем управления параметрами оптического излучения и пассивных ограничителей мощности оптического излучения на основе коллоидных $KT Ag_2S$ для защиты глаз человека, а также приборов и систем регистрации оптического излучения, выравнивания интенсивности световых потоков в волоконно-оптических системах передачи и обработки информации и т.п.

Основные положения, выносимые на защиту

1. Размерный эффект в оптическом поглощении квантовых точек Ag_2S определяется преимущественно формирующимися в рамках синтеза кристаллическими ядрами Ag_2S (1.8 – 2.5 нм) и не подвержен влиянию сформированных на ядрах оболочек из желатинатов серебра, что объясняет наблюдаемые различия в оптических и морфологических свойствах.

2. Свойства прямого возбуждения центров фотолюминесценции излучением с энергиями квантов 2.1 – 1.2 эВ, а также слабой размерной зависимости положения соответствующего максимума (1200-1240 нм) в коллоидных КТ Ag₂S, определяющиеся излучательной рекомбинацией электронов, локализованных на уровнях структурно-примесных дефектов со свободными дырками.

3. Механизм излучательной рекомбинации на донорно-акцепторных парах для полос фотолюминесценции коллоидных КТ CdS с максимумами, положение которых изменяется от 2.48 до 1.83 эВ по мере увеличения размера от 2.2 до 4.5 нм, проявляющийся в их длинноволновом смещении по мере затухания люминесценции во временном интервале $0.3 - 4 \cdot 10^3$ нс.

4. Данные о локализованных состояниях в коллоидных KT Ag_2S и CdS, установленные методом термостимулированной люминесценции, а также методом фотостимулированной вспышки люминесценции.

5. В ансамблях коллоидных КТ Ag₂S методом z-сканирования в схеме с открытой апертурой установлено обратное насыщающееся поглощение, возникающее при двухквантовых оптических переходах с участием уровней центров фотолюминесценции.

<u>Личный вклад автора</u>

Настоящая работа выполнена на кафедре оптики и спектроскопии ФГБОУ ВО «Воронежский государственный университет» и проводилась в соответствии с планом ее НИР (Госзадание Минобрнауки РФ на 2014-2016 г (проект №1230)), а также поддержана грантами РФФИ (№11-02-00698-а, №14-02-31278-мол_а, №14-02-31646-мол_а, №15-52-04078-Бел_мол_а, №15-02-04280-а) и ФЦП (мероприятие

1.2.1, соглашение №14В37.21.1071). Определение задач исследования и анализ полученных экспериментальных данных осуществлялись под руководством заведующего кафедрой оптики и спектроскопии, доктора физико-математических наук, профессора Овчинникова Олега Владимировича. Все включенные в диссертацию данные получены лично автором или при его непосредственном участии. Автором осуществлено обоснование выбора методов исследования и проведены экспериментальные исследования, анализ и интерпретация полученных результатов, сформулированы основные выводы и научные положения, выносимые на защиту.

Апробация работы

Основные результаты работы докладывались и обсуждались на Всероссийских Международных конференциях различного уровня: «Фундаментальные И проблемы оптики – 2012»: VII Международная конференция г. Санкт-Петербург, IV научно-практическая конференция «Методы создания, исследования микро-, наносистем и экономические аспекты микро-, наноэлектроники», 8th International Conference on Quantum Dots Pisa, Italy, VI Международная школа-конференция «Современные проблемы физики – 2014» г. Минск, 1-я междисциплинарная конференция «Современные решения для исследования природных, синтетических И биологических материалов», Г. Санкт-Петербург, Международная научная конференция «Наноструктурные материалы – 2014: Беларусь – Россия – Украина» (НАНО-2014), XVII Международная конференция «Опто-, наноэлектроника, нанотехнологии и микросистемы» Ульяновск, XXVII симпозиум «Современная химическая физика», IX международной конференции молодых ученых и специалистов «Оптика – 2015» г. Санкт-Петербург, 3rd International School and Conference on Optoelectronics, Photonics, Engineering and Nanostructures, "Saint Petersburg OPEN 2016", 5-я Международная научнотехническая конференция «Технологии микро- и наноэлектроники в микро- и наносистемной технике», г. Зеленоград.

<u>Публикации</u>

По результатам диссертации опубликовано 28 работ, в том числе: статьи в изданиях, рекомендованных ВАК – 6; статьи в зарубежных журналах, индексируемых Web of Science – 1; патенты – 3.

Структура и объем диссертации

Диссертация состоит из введения, 5 глав, заключения и списка литературы. Работа изложена на 145 страницах машинописного текста, содержит 54 рисунка, 12 таблиц. Список литературы включает 190 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во введении обоснована актуальность темы диссертации, сформулированы

цель и задачи исследования, определены объекты исследования, указаны положения, выносимые на защиту. Определена научная новизна и практическая ценность полученных результатов. Даны сведения о публикациях и апробации работы.

В первой главе выполнен научной литературы, который анализ свидетельствует об исследований фундаментальных актуальности закономерностей и размерных эффектов в фотофизике полупроводниковых коллоидных КТ CdS и Ag₂S с участием локализованных состояний. Сделан вывод о том, что успешное развитие большинства приложений с применением полупроводниковых коллоидных КТ В устройствах оптоэлектроники И биомедицинских приложениях сдерживается отсутствием однозначных данных, касающихся: а) энергетической структуры локализованных состояний различной глубины, возникновение которых связано с наличием структурно-примесных дефектов кристаллической структуры коллоидных КТ CdS и Ag₂S, возникающих на стадии их синтеза; б) различных механизмов фотопроцессов в КТ, обладающих рекомбинационной люминесценцией; в) подробных исследований размерных зависимостей в абсорбционных и люминесцентных свойствах КТ Ag₂S, а также роли локализованных состояний в формировании указанных свойств.

Во второй главе дано описание аппаратуры и оригинальных методик водного синтеза коллоидных растворов КТ CdS и Ag₂S в желатине. Диспергированные в желатине коллоидные КТ CdS и Ag₂S синтезированы двухструйным сливанием водных растворов CdBr₂ и Na₂S (AgNO₃ и Na₂S) в водный раствор фотографической желатины при постоянной температуре. Управление средними размерами КТ осуществляли изменением температуры синтеза от 40 до 80°C и концентрации вводимых реагентов, а также дополнительным созреванием золя, содержащего КТ, при температуре 95°C.

Данные о структурных свойствах синтезированных ансамблей КТ CdS и Ag_2S получали с помощью просвечивающего электронного микроскопа Libra 120 (CarlZeiss, ФРГ, ЦКП ФГБОУ ВО «ВГУ») и рентгеноструктурного анализа образцов на дифрактометре ARL X'TRA (Швейцария, ЦКП ФГБОУ ВО «ВГУ»).

ПЭМ изображений синтезированных В результате анализа образцов установлено формирование ансамблей КΤ CdS средними размерами, изменяющимися в пределах от 2.2 нм до 4.5 нм. На рис. 1 а представлено ПЭМизображение от одного из образцов КТ CdS. По данным рентгеновской дифракции установлено, что в используемых условиях синтеза наночастицы CdS кристаллизуются в кубической модификации (F43m) (рис. 1б).

Для наночастиц Ag₂S по данным ПЭМ средний размер составил 3-5 нм (рис.

2а). По данным ПЭМ с высоким разрешением обнаружено формирование нанокристаллов Ag_2S в моноклинной решетке ($P2_1/C$) (рис. 2б). При этом сопоставление светлопольных и темнопольных изображений указывает на образование оболочек из желатинатов серебра на нанокристаллах Ag_2S размерами 1.8-2.5 нм и образование структур типа core/shell (рис. 2в).

Рисунок 1 – ПЭМ-изображение и гистограмма распределения по размеру (а), рентгеновская дифракция (б) коллоидных КТ CdS (2.2±0.5 нм).

Рисунок 2 – ПЭМ-изображение, гистограмма распределения по размеру (а), ПЭМ изображение с высоким разрешением (б) и ПЭМ изображение структуры ядро / оболочка (в) коллоидных КТ Ag₂S.

Во второй части второй главы приведено описание используемой при исследовании спектров оптического поглощения И фотолюминесценции аппаратуры, описание установки **Z**-сканирования, а также ДЛЯ метода используемой в пятой главе для анализа механизмов оптических нелинейностей в КТ Ag_2S . Кроме того, приводится описание используемых в главе 4 методик фото- и термостимулированной люминесценции (соответственно, ФСВЛ и ТСЛ).

<u>В третьей главе</u> приведены результаты исследований размерного эффекта в спектрах оптического поглощения и фотолюминесценции (ФЛ) исследованных образцов КТ CdS и Ag₂S. По величине размерного эффекта в спектре оптического поглощения выполнены оценки средних размеров КТ CdS и Ag₂S по формуле, предложенной в работе Y. Kayanuma [7]:

$$E_{g}^{eff} = E_{g} + \frac{\hbar^{2}\pi^{2}}{2\mu R^{2}} - \frac{1.8e^{2}}{\varepsilon R} - 0.248 E_{Ry}^{*}, \qquad (1)$$

где $\mu = m_e^* m_h^*/(m_e^* + m_h^*)$ – приведенная масса, $E_{Ry}^* = e^4/2\varepsilon^2\hbar^2(m_e^{*-1} + m_h^{*-1})$ – эффективная энергия Ридберга, ε – диэлектрическая проницаемость. Для оценок использовали следующие значения параметров для монокристалла CdS: $E_g = 2.36$ эВ, $\varepsilon = 9.3$, $m_e^* = 0.205m_0$, $m_h^* = 1.6m_0$ [8]; а также для Ag₂S: $E_g = 1.0$ эB, $\varepsilon = 5.95$, $m_e^* = 0.23m_0$, $m_h^* = 0.81m_0$ [9].

В разделе 3.1 рассмотрены спектральные проявления размерного эффекта в оптическом поглощении и ФЛ КТ CdS в желатине. Наблюдали коротковолновый сдвиг положения наиболее вероятного перехода в КТ CdS к 2.70 - 3.47 эВ при

уменьшении среднего размера до 4.5 - 2.2 нм, соответственно (рис. 3а). Оценки средних размеров КТ CdS, выполненные по формуле (1), удовлетворительно согласуются с их значениями, полученными из анализа ПЭМ-изображений, а также с литературными данными.

Рисунок 3 – Спектры оптического поглощения (а) и фотолюминесценции (б) коллоидных КТ CdS средних размеров: 2.2 нм – 1, 2.5 нм – 2, 3.1 нм – 3, 3.3 нм – 4, 3.5 нм – 5, 3.8 нм – 6 и 4.5 нм – 7. Рисунок 4 – Кинетика люминесценции при сканировании по полосе люминесценции коллоидных КТ CdS средним размером 2.5 нм.

В спектрах ФЛ КТ CdS, возбуждаемых излучением с длиной волны 380 нм, имела место размерная зависимость положения максимума полосы ФЛ (рис. 36). Стоксов сдвиг максимума люминесценции относительно положения экситонного перехода в оптическом поглощении достигал 0.99 - 0.84 эВ, что указывает на рекомбинационный характер наблюдаемого свечения.

Анализ наносекундной кинетики люминесценции в исследуемых полосах ФЛ в диапазоне 0.3-4·10³ нс показал сложную мультиэкспоненциальную зависимость, для которой также было характерно замедление среднего времени затухания люминесценции (от 25.4 нс к 63.5 нс) с увеличением ее длины волны. При этом по мере затухания люминесценции положение максимума полосы смещалось в длинноволновую сторону (рис. 4, врезка). Аппроксимацию кинетики затухания рекомбинационной люминесценции осуществляли в виде суперпозиции четырех экспонент [9]: $I = \sum_{i} a_i \exp(t/\tau_i)$ (2)

Среднее время жизни при этом определяется выражением:

$$<\tau>=\frac{\sum_{i}a_{i}\tau_{i}}{\sum_{i}a_{i}}$$
(3)

Полученные кинетические закономерности указывают на донорноакцепторный механизм излучательной рекомбинации, о чем, свидетельствует наблюдаемое длинноволновое смещение спектра люминесценции по мере затухания люминесценции [10]. Имеющиеся закономерности объяснены в рамках известного выражения для энергии кванта (D-A) люминесценции:

$$\hbar \omega_{lum} = E_g - E_d - E_a + \frac{e^2}{\mathcal{E}r}$$
(4)

где Eg – ширина запрещённой зоны массивного кристалла, или энергия экситона для КТ, E_d и E_a - энергии связи донора и акцептора, ε – диэлектрическая константа, r – расстояние между донором и акцептором. Из (4) видно, что наибольшими энергией кванта люминесценции и вероятностью рекомбинации обладают (D-A) переходы КТ CdS с наименьшими расстояниями между D и A. этапе Ha Они проявляются на начальном затухания. конечном этапе высвечиваются наиболее удалённые (D-A) пары, что И приводит К длинноволновому смещению полосы при затухании. Таким образом, для коллоидных КТ CdS с максимумами полос ФЛ, положение которых изменяется от 2.48 до 1.83 эВ по мере увеличения размера от 2.2 до 4.5 нм, сделано заключение об излучательной рекомбинации на донорно-акцепторных парах.

В разделе 3.2 представлены данные о спектральных проявлениях размерного эффекта в оптическом поглощении и ФЛ коллоидных КТ Ag₂S в виде размернозависимой особенности (перегиба) в области 2.9-2.5 эВ (рис. 5а), обусловленной преобладанием экситонного перехода в поглощении. Оценки средних размеров КТ Ag₂S по спектрам оптического поглощения с помощью (1) дали заметное расхождение значений средних размеров КТ с данными, полученными из анализа ПЭМ изображений. Имеющиеся различия обусловлены наличием core/shell структуры типа кристаллическое ядро/оболочка из желатинатов серебра, а абсорбционные свойства КТ Ag₂S определяются размером кристаллических ядер. Для КТ Ag₂S при возбуждении излучением с длиной волны 440 нм обнаружена ФЛ в области 800-1400 нм (рис. 5б). Стоксов сдвиг полосы ФЛ относительно особенности в спектре поглощения света при этом лежит в пределах 1.3–1.96 эВ, что связано с ее рекомбинационным характером [8]. В свою очередь, слабая немонотонная размерная зависимость люминесценции в КТ Ag₂S может быть обусловлена рекомбинацией локализованного электрона со свободной дыркой, а также параметрами core/shell - наночастиц. В этом случае зависимость положения максимума ФЛ от размера КТ определяется размерным эффектом для состояний "валентной зоны", заполненных электронами (см. рис. 6).

По спектрам возбуждения ФЛ КТ Ag₂S (рис. 5а, пунктирные кривые) обнаружены протяженные полосы, указывающие на возможность прямого возбуждения центров ФЛ квантами, энергия которых приходится на область примесного поглощения света.

Рисунок 5 – Спектры оптического поглощения (а) и фотолюминесценции (б) коллоидных КТ Ag₂S размерами: 1.8 нм – 1, 2.2 нм – 2, 5.3 нм – 3, 1.1 нм – 4. Рисунок 6 – Энергетическая диаграмма КТ Ag₂S, демонстрирующая проявление размерного эффекта в ФЛ.

<u>В четвертой главе</u> приведены результаты исследований свойств локализованных состояний с помощью методов ФСВЛ и ТСЛ.

нм) – 4, МК CdS – 5, 1 монослой ZnS – 6.

эффект фотостимулированной вспышки люминесценции, наблюдаемый в коллоидных КТ CdS. Для КΤ CdS core/shell CdS/ZnS И регистрировалась вспышка люминесценции, стимулируемая квантами с энергиями от 0.6 до 2.0 эВ после затухания стационарной ФЛ. Важной особенностью спектров фотостимуляции была размерная зависимость положения максимумов и особенностей в спектре фотостимуляции для КТ CdS разного размера. Сделано предположение о том, что наблюдаемая сложная спектральная обусловлена картина возможностью

фотоионизации локализованного состояния и перевода носителей на несколько уровней размерного квантования, резонансных со стимулирующими квантами. Поверхностная природа наблюдаемых в ФСВЛ состояний подтверждалась изменениями спектров ФСВЛ при формировании core/shell KT CdS/ZnS, спектры стимуляции ФСВЛ заметно отличались от спектров открытых KT CdS (рис. 8, кривая 6). Формирование оболочки толщиной 1 - 2 монослоя приводило к снижению светосуммы ФСВЛ, что вызвано устранением оборванных связей и "залечиванием" поверхностных дефектов. При увеличении толщины оболочки до 4 монослоев наблюдался рост светосуммы ФСВЛ, который объясняется формированием дополнительных дефектов из-за несоответствия периодов

решёток сульфидов цинка и кадмия.

Раздел 4.2 содержит результаты исследований структуры мелких локализованных состояний в КТ CdS методом ТСЛ.

Обнаруженное температурное тушение ФЛ КТ CdS в диапазоне температур 80-300 К (рис. 9а) анализировали в рамках кинетической модели, предложенной в [6] и в рамках схемы на врезке к рис. 9а. Согласно данной модели интенсивность экситонной люминесценции определяется выражением:

$$I_{3KC} = \alpha n_1 \gamma_1 = \frac{G \alpha \gamma_1}{\left[\alpha [\gamma_1 + \gamma'_1(0) \cdot \exp(-\Delta E_1 / kT)] + \gamma'_3 [\frac{\gamma_3 \beta}{\gamma_3 \beta + \gamma'_3(0) \cdot \exp(-\Delta E_3 / kT)}] \right]}$$
(5)

В свою очередь, интенсивность (D-A) полосы люминесценции будет:

$$I_{D-A} = \beta n_{3} \gamma_{3} = \beta \gamma_{3} n_{1} \frac{\gamma_{3}}{\gamma_{3} \beta + \gamma_{3}''(0) \cdot \exp(-\Delta E_{3} / kT)}.$$
 (6)

Аппроксимацией экспериментальных данных выражениями (5) и (6) для КТ CdS получены значения энергии активации температурного тушения экситона E_1 (0.04-0.05 эВ) и глубины донора E_3 (0.11-0.12 эВ).

Рисунок 9 – Температурные зависимости в максимуме полос (D-A) рекомбинации и экситонной люминесценции для КТ CdS d = 4.5 нм (а) и разностные кривые температурных зависимостей интенсивности D-A люминесценции в максимуме соответствующей полосы (б) и схема уровней для КТ CdS размерами: 3.1 нм – 1; 3.3 нм – 2; 3.5 нм – 3; 3.8 нм – 4; 4.5 нм – 5.

Ha рис.9,б представлены температурные зависимости интенсивности люминесценции в максимуме полосы рекомбинационной полосы, полученные вычитанием из кривой на нагревание кривой на охлаждение, имели два максимума в области 130–180 К и 260–320 К. Для определения глубины данных была дифференциальными ловушек модель дополнена уравнениями, описывающими заселенность ловушек 2 и 5 и соответствующими процессами с 9б. ИХ участием (рис. врезка). В результате численного решения уравнений дифференциальных для коллоидных КТ CdS установлено существование двух типов электронных локализованных состояний с глубинами 0.08 эВ и 0.12 – 0.18 эВ, первый из которых не испытывает размерной

зависимости, а второй обладает её немонотонным характером.

Раздел 4.3 посвящен исследованиям энергетической структуры мелких локализованных состояний и температурного тушения в КТ Ag₂S. На рис. 10а даны температурные зависимости интегральной интенсивности люминесценции КТ Ag₂S, полученные при охлаждении и нагревании образца.

Рисунок 10 – Температурные зависимости интенсивности люминесценции (а), их разностные кривые (б) и схема уровней (в) для КТ Ag₂S размерами: 1.8 нм – 1; 1.9 нм – 2; 2.1 нм – 3.

Разностные кривые, отображающие различие интегральных интенсивностей при охлаждении и нагреве для КТ Ag_2S разного размера, даны на рис. 10,6. Каждая кривая представляет собой неэлементарную полосу с максимумом в районе 160 К, 131 К и 148 К для КТ Ag_2S средним размером 1.8, 1.9 и 2.1 нм соответственно.

Энергетические параметры температурного тушения в коллоидных КТ Ag_2S , оценивали в рамках модели, схема которой приведена на врезке к рис. 10а. В данной модели интенсивность рекомбинационной люминесценции в КТ Ag_2S определяется выражением:

$$I_{pe\kappa} = n_2 \gamma_2 n_0 = \frac{G n_0 \gamma_2 \gamma_2}{(n_0 [\gamma_1 + \gamma_1] + \gamma_2)(n_0 \gamma_2 + \gamma_2) - \gamma_2 \gamma_2^{'}},$$
(7)

где G – интенсивность возбуждения КТ, γ_1 – вероятность излучательной аннигиляции экситона, $\gamma_1'(T) = \gamma_1'(0) \exp(-\Delta E_1/kT)$ — вероятность безызлучательной экситона, γ_2' – вероятность захвата электрона аннигиляции на центр люминесценции, $\gamma_2''(T) = \gamma_2''(0) \exp(-\Delta E_2/kT)$ – вероятность освобождения электрона глубиной люминесценции, определяемая залегания С центра центра люминесценции ΔE_2 ; n_0 – заселенность уровня $1S^h$ дырками, не зависящая от температуры; n_i – заселённость *i*-го уровня электронами. В результате аппроксимации кривых, полученных при охлаждении образцов, получены значения энергий температурного тушения люминесценции в КТ Ag₂S,

составившие 0.10 эВ, 0.06 эВ и 0.08 эВ для КТ Ag₂S средним размером 1.8 нм, 1.9 нм и 2.1 нм, соответственно.

С помощью численного решения системы дифференциальных уравнений в рамках вышеуказанной модели для КТ Ag_2S с учетом обнаруженных ловушек 3 и 4 установлено существование двух типов дырочных ловушек с глубинами 0.08 эВ и 0.11 эВ, 0.04 эВ и 0.10 эВ, 0.07 эВ и 0.09 эВ для КТ Ag_2S средними размерами 1.8 нм, 1.9 нм и 2.1 нм, соответственно.

<u>В пятой главе</u> рассмотрены результаты исследования эффекта низкопорогового ограничения оптической мощности для излучения с длиной волны 660 нм и длительностью импульса 10 мс в коллоидными КТ Ag₂S средним размером 1.8-1.9 нм. Порог ограничения которого составил от 2.2±0.2 до 3.1±0.2 мДж/см² при времени срабатывания менее 1 мс (рис. 11).

Рисунок 11 – Зависимость прошедшей через образец плотности энергии оптического излучения от падающей: (а) – для КТ Ag₂S средним размером 1.8 нм – 1 и 1.9 нм –2; (б) – те же образцы после термообработки. Пунктир – уровень линейного пропускания исследуемых образцов.

Рисунок 12 – (а) – Z -сканы для образцов коллоидных КТ Ag₂S в желатине средним размером: 1.8 нм – 1 и 1.9 нм –2; 1' и 2' – те же образцы после термообработки. Номера кривых соответствуют: 1 – закрытая апертура; 2 – открытая апертура; 3 – компонента, обусловленная дефокусировкой. (б) – схема оптических переходов, обуславливающих эффект обратного насыщающенного поглощения в КТ Ag₂S.

С помощью техники Z – сканирования в варианте с закрытой апертурой (рис. 12а) установлено, что основными механизмами являются обратное насыщенное поглощение (RSA), происходящее за счет двухфотонных переходов с участием

локализованных состояний – центров люминесценции (рис. 12б), а также формирование динамической линзы, имеющей тепловую природу. Сделано заключение о том, что возможность возбуждения центров люминесценции в широком спектральном диапазоне, в который попадает рабочее излучение, и заметное время жизни электрона в центре ФЛ обеспечивает двухфотонные переходы в КТ Ag₂S и приводит к возникновению эффекта ограничения мощности оптического излучения.

В заключении приведены основные результаты диссертации.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ

1. Разработаны методики водного синтеза в желатине коллоидных КТ Ag₂S размерами 1.8-2.5 нм и CdS размерами 2.2-4.5 нм. Указанные ансамбли обладают размерно-зависимыми оптическими свойствами. Для КТ Ag₂S установлено формирование структур типа кристаллическое ядро Ag₂S/оболочка из желатинатов серебра.

2. Показано, что рекомбинационная люминесценция для коллоидных КТ Ag_2S происходит с участием уровней структурно-примесных дефектов, формирующихся на стадии синтеза КТ, и возникает в результате излучательной рекомбинации с участием глубокой электронной ловушки поверхностной природы и свободной дырки. Кроме того, обнаружено свойство прямого возбуждения центра люминесценции в КТ Ag_2S квантами, приходящимися на область примесного поглощения света.

3. Установлено, что фотолюминесценция КТ CdS с максимумами, положение которых изменяется от 2.48 до 1.83 эВ по мере увеличения размера от 2.2 до 4.5 нм, испытывает длинноволновое смещение по мере затухания люминесценции $(0.3-4\cdot10^3 \text{ hc})$ и происходит в результате излучательной рекомбинации на донорно-акцепторных парах.

4. Исследовано температурное тушение люминесценции в ансамблях коллоидных КТ CdS и Ag₂S, энергия активации которого составила 0.04-0.05 эВ для КТ CdS средним размером 3.1-4.5 нм и 0.10-0.06 эВ для КТ Ag₂S средним размером 1.8-2.5 нм. Предположено, что температурное тушение люминесценции в КТ CdS и Ag₂S обусловлено электрон-фононным взаимодействием.

5. Для КТ CdS и Ag₂S обнаружены локализованные состояния, отвечающие за возникновение эффектов фото- и термостимулированной люминесценции в КТ CdS и Ag₂S. Для КТ CdS средним размером 3.1 - 4.5 нм установлены два типа электронных ловушек, первая из которых не испытывает размерной зависимости и обладает глубиной 0.08 эB, а вторая глубиной 0.13 - 0.18 эB и немонотонным характером размерной зависимости. В случае КТ Ag₂S наблюдали две группы

дырочных ловушек с глубинами 0.08 эВ и 0.11 эВ, 0.04 эВ и 0.10 эВ, 0.07 эВ и 0.09 эВ для КТ Ag₂S средним размером 1.8 нм, 1.9 нм и 2.1 нм, соответственно.

6. Для ансамблей коллоидных КТ Ag_2S , диспергированных в желатине, установлен эффект ограничения мощности для оптического излучения на длине волны $\lambda = 660$ нм с длительностью импульсов 10 мс и порогом срабатывания 2.2-3.1 мДж/см². Методом Z-сканирования в варианте с открытой апертурой показано, что ограничение мощности обусловлено преимущественно обратным насыщающимся поглощением, возникающем при двухквантовых оптических переходах с участием уровней центров фотолюминесценции, связанных со структурно-примесными дефектами в коллоидных КТ Ag_2S .

Список цитированной литературы

- 1. L. Sun, [et al.] // Nature nanotechnology. 2012. V.7. P.369-373.
- 2. N.P. Bhola, [et al.] // Nano Lett. 2012. V. 12. P. 331–336.
- 3. D. Bera, [et al.] // Materials. 2010. V.3. P.2260-2345.
- 4. M. Xia, [et al.] //Scientific Reports. 2017. V.7. Art. N. 42359.
- 5. W.J. Mir, [et al.] // J. Phys. Chem. Lett. 2015. V.6. P.3915-3922.
- 6. A.V. Katsaba, [et al.] // J. Appl. Phys. 2013. V. 113. P.184306-1-184306-6.
- 7. Y. Kayanuma // Physical Review B. V. 38. No. 14. P. 9797-9805.
- 8. А.И. Екимов, [и др.] // Физика твердого тела. 1989. Т.31,№8. с.192-207.
- 9. I. Hocaoglu, [et al.] // J. Mater. Chem. 2012. V. 22. P. 14674-14681.
- 10. M. Majumder, [et al.] // Journal of Luminescence. 2011. V.131. P.2792-2802.
- 11. D.I. Chepic, [et al.] // Journal of Luminescence. 1990. V.47, Is. 3. -P. 113-127.

Основное содержание диссертации изложено в следующих работах:

1. Природа спектров фотостимуляции вспышки люминесценции в квантовых точках CdS / O.B. Овчинников, М.С. Смирнов, А.Н. Латышев, А.С. Перепелица [и др.] // Оптический журнал. – 2013. – Т.80, №7. – С.13-20.

2. Распад электронных возбуждений в коллоидных квантовых 2точках CdS и CdS/ZnS: спектральные и кинетические исследования / М.С. Смирнов, Д.И. Стаселько, О.В. Овчинников, А.Н. Латышев, О.В. Буганов, С.А. Тихомиров, А.С. Перепелица // Оптика и спектроскопия. – 2013. – Т. 115, № 5. – С. 737-746.

3. Оптические и структурные свойства ансамблей коллоидных квантовых точек Ag₂S в желатине / О.В. Овчинников, М.С. Смирнов, Б.И. Шапиро, Т.С. Шатских, А.С. Перепелица [и др.] // Физика и техника полупроводников. – 2015. – Т.49, №3. – С. 385-391.

4. Ограничение оптической мощности в ансамблях коллоидных квантовых точек Ag₂S / О.В. Овчинников, М.С. Смирнов, А.С. Перепелица [и др.] // Квантовая электроника. – 2015. – Т. 45, №12. – С.1143-1150.

5. Перепелица, А.С. Термостимулированная люминесценция в коллоидных квантовых точках Ag₂S / А.С. Перепелица, А.С. Котко // Вестник ВГУ серия Физика и математика. – 2016. – №2. – С. 22-33.

6. Исследование свойств локализованных состояний в коллоидных квантовых точках CdS в желатине / М.С. Смирнов, А.С. Перепелица [и др.] // Конденсированные среды и межфазные границы. – 2016. – Т.18(1). – С. 115-124.

7. Dynamics of electronic excitations relaxation in hydrophilic colloidal CdS quantum dots in gelatin with involvement of localized states / M.S. Smirnov, O.V. Buganov, E.V.

Shabunya-Klyachkovskaya, S.A. Tikhomirov, O.V. Ovchinnikov, A.G. Vitukhnovsky, A.S. Perepelitsa [et al.] // Physica E: Low-dimensional Systems and Nanostructures. – 2016. – V. 84. – P. 511-518.

8. О.В. Овчинников, М.С. Смирнов, Б.И. Шапиро, Т.С. Шатских, А.С. Перепелица Устройство для синтеза коллоидных полупроводниковых нанокристаллов низкотемпературным золь-гель методом. Патент на полезную модель РФ 134445 опубл. 20.10.2013. Бюл. № 32. – 2 с.

9. О.В. Овчинников, М.С. Смирнов, Б.И. Шапиро, Т.С. Шатских, А.С. Перепелица [и др.] Способ получения полупроводниковых кантовых точек сульфида кадмия. Патент на изобретение РФ 2540385 опубл. 10.02.15, Бюл. №4. – 12 с.

10. О.В. Овчинников, М.С. Смирнов, Б.И. Шапиро, Т.С. Шатских, А.С. Перепелица [и др.] Патент на изобретение РФ 2538262. опубл. 10.01.2015, Бюл. №1. – 9 с.

11. Природа спектров фотостимуляции вспышки люминесценции в квантовых точках CdS / A.C. Перепелица, О.В. Овчинников, М.С. Смирнов [и др.] // Фундаментальные проблемы оптики – 2012: VII Междунар. конф. 15-19 октября 2012г., Санкт-Петербург. – Сборник трудов. – Санкт-Петербург, 2012. – С. 126-129.

12. Исследование низкопороговых оптических нелинейностей в коллоидных квантовых точках Ag₂S методом Z-сканирования / Т.С. Шатских, О.В. Овчинников, М.С. Смирнов, А.С. Перепелица // IV научно-практическая конференция «Методы создания, исследования микро-, наносистем и экономические аспекты микро-, наноэлектроники». – Сборник статей 4-6 июня 2013 г. – Пенза, 2013. – С.142-144.

13. Спектральные свойства коллоидных квантовых точек Ag₂S / A.C. Перепелица, O.B. Овчинников, M.C. Смирнов [и др.] // Сборник тезисов докладов конференции и школы молодых учёных по фундаментальной атомной спектроскопии ФАС - XX 23-27 сентября 2013 г. – Воронеж, 2013. – С.170-172.

14. Absorption and luminescence properties of colloidal Ag_2S quantum dots / O.V. Ovchinnikov, A.S. Perepelitsa, T.S. Shatskikh [et al.] // 8 th International Conference on Quantum Dots: abstract book, May 11-16, 2014.-Pisa, Italy, 2014. – P. 81.

15. Структурные свойства ансамблей коллоидных квантовых точек Ag₂S в желатине / А.С. Перепелица, О.В. Овчинников, М.С. Смирнов [и др.] // Сборник тезисов 1-й междисциплинарной конференции «Современные решения для исследования природных, синтетических и биологических материалов» Санкт-Петербург, Россия, 20-22 Октября 2014. – С. 122.

16. Оптические свойства ансамблей коллоидных квантовых точек Ag₂S в желатине/ О.В. Овчинников, М.С. Смирнов, Т.С. Шатских, Б.И. Шапиро, А.С. Перепелица // Наноструктурные материалы – 2014: Беларусь – Россия – Украина (НАНО-2014): докл. Междунар. научн. конф., Минск, 7-10 октября 2014. – Минск, 2014. – С. 67.

17. Низкопороговые оптические нелинейности в ансамблях коллоидных квантовых точек сульфида серебра / А.С. Перепелица, Т.С. Шатских, О.В. Овчинников [и др.] // Сборник трудов XVII международной конференции «Опто-, наноэлектроника, нанотехнологии и микросистемы», Ульяновск, 17-20 июня 2015. – С. 142-144.

18. Фемтосекундная динамика распада экситонов в коллоидных квантовых точках CdS / М.С. Смирнов, Е.В. Шабуня-Клячковская, О.В. Овчинников, А.С. Перепелица [и др.] // Сборник трудов XVII международной конференции «Опто-, наноэлектроника, нанотехнологии и микросистемы», Ульяновск, 17-20 июня 2015. – С. 145-146.

19. Фемтосекундная динамика распада экситонов в коллоидных квантовых точках CdS / М.С. Смирнов, Е.В. Шабуня-Клячковская, О.В. Овчинников, А.С. Перепелица [и др.] // «Современная химическая физика XXVII симпозиум: сборник тезисов. – Туапсе, 20 сентября – 1 октября, 2015 г. Пансионат «Маяк», г. Туапсе, 2015. – С. 113.

20. Низкопороговые оптические нелинейности в ансамблях коллоидных квантовых точек сульфида серебра / А.С. Перепелица, Т.С. Шатских, О.В. Овчинников [и др.] // Сборник трудов IX международной конференции молодых ученых и специалистов «Оптика-2015» г. Санкт-Петербург 12 -16 октября 2015 г. – г. Санкт-Петербург, 2015. – С.266-269.

21. Оптические свойства ансамблей коллоидных квантовых точек Ag₂S / A.C. Перепелица, Т.С. Шатских, О.В. Овчинников [и др.] // Сборник трудов IX международной конференции молодых ученых и специалистов «Оптика - 2015» г. Санкт-Петербург 12 -16 октября 2015 г. – г. Санкт-Петербург, 2015. – С.367-369.

22. Investigation of localized states in colloidal Ag_2S quantum dots by method of thermally stimulated luminescence / A.S. Perepelitsa, O.V. Ovchinnikov, M.S. Smirnov [et al.] // 3 rd International School and Conference on Optoelectronics, Photonics, Engineering and Nanostructures "Saint Petersburg OPEN 2016" March 28-30, 2016, Saint Petersburg, Russia: book of abstract, 2016. – P.418-419.

23. Оптические свойства коллоидных квантовых точек Ag₂S / A.C. Перепелица, О.В. Овчинников, М.С. Смирнов [и др.] // 5-я международная научно-техническая конференция «Технологии микро- и наноэлектроники в микро- и наносистемной технике». Зеленоград, 13-15 апреля 2016 г. Сборник трудов. – 2016. – С.180-182.

24. Динамика распада электронных возбуждений в гидрофильных коллоидных квантовых точках CdS в желатине с участием локализованных состояний / М.С. Смирнов, О.В. Буганов, Е.В. Шабуня-Клячковская, С.А. Тихомиров, О.В. Овчинников, А.С. Перепелица [и др.] // 5-я международная научно-техническая конференция «Технологии микро- и наноэлектроники в микро- и наносистемной технике». Зеленоград, 13-15 апреля 2016 г. Сборник трудов. – 2016. – С.206-208.

25. Динамика распада экситона в коллоидных квантовых точках CdS в желатине с участием локализованных состояний / М.С. Смирнов, О.В. Буганов, Е.В. Шабуня-Клячковская, С.А. Тихомиров, О.В. Овчинников, А.С. Перепелица [и др.] // «Современные проблемы физики», междунар. школа-конф. молодых учёных и специалистов (2016; Минск). Международная школа-конференция молодых учёных и специалистов «Современные проблемы физики», 8-10 июня 2016 г.: [сб. науч. тр.] / под ред. В.В. Машко, Д.В. Новицкого, М.С. Усачёнка. – Минск: Институт физики НАН Беларуси. – 2016. – С. 254-259.

26. Проявление размерного эффекта в спектральных свойствах коллоидных квантовых точек Ag₂S / Т.С. Кондратенко, О.В. Овчинников, М.С. Смирнов, А.С. Перепелица // XV Международная молодежная конференция по люминесценции и лазерной физике: тезисы лекций и докладов: с. Аршан, респ. Бурятия, 18-24 июля 2016 г. – С.93.

27. Кинетика люминесценции в коллоидных квантовых точках CdS / M.C. Смирнов, O.B. Овчинников, A.C. Перепелица // «Современная химическая физика XXVII симпозиум: сборник тезисов. - Туапсе, 19 - 30 сентября, 2016 г. Пансионат «Маяк», г. Туапсе. – 2016. – С. 332.

28. Локализованные состояния в коллоидных квантовых точках CdS / M.C. Смирнов, O.B. Овчинников, А.С. Перепелица // «Современная химическая физика XXVII симпозиум: сборник тезисов. - Туапсе, 19 - 30 сентября, 2016 г. Пансионат «Маяк», г. Туапсе. – 2016. – С. 333.

Работы [1-6] из списка опубликованы в изданиях, рекомендованных ВАК РФ.