На правах рукописи

6 Stermer

Нетреба Евгений Евгеньевич

СИНТЕЗ, СТРУКТУРА И СВОЙСТВА КОМПЛЕКСНЫХ СОЕДИНЕНИЙ СПИРОКАРБОНА С d- И f-МЕТАЛЛАМИ

Специальность 02.00.01 – неорганическая химия

Автореферат диссертации на соискание ученой степени кандидата химических наук

Воронеж – 2014

Работа выполнена в Таврическом национальном университете им. В.И. Вернадского

Научный руководитель:

доктор химических наук, профессор Федоренко Александр Михайлович

Официальные оппоненты:

Гаврилов Константин Николаевич, доктор химических наук, профессор, ФГБОУ ВПО «Рязанский государственный университет имени С.А.Есенина», заведующий кафедрой химии

Лыткин Александр Иванович, доктор химических наук, профессор, ФГБОУ ВПО «Ивановский химико-технологический университет», профессор кафедры аналитической химии

Ведущая организация: ФГБУН «Институт общей и неорганической химии имени Н.С. Курнакова Российской академии наук »

Защита состоится «13» ноября 2014 г. в 14⁰⁰ час. на заседании диссертационного совета Д 212.038.08 по химическим наукам на базе Воронежского государственного университета по адресу: 394006 Воронеж, Университетская пл., 1, ВГУ, химический факультет, ауд. 439.

С диссертацией можно ознакомиться в научной библиотеке Воронежского государственного университета и на сайте <u>http://www.science.vsu.ru</u>

Автореферат разослан «17» сентября 2014 г.

Ученый секретарь диссертационного совета

Cereus -

Семенова Галина Владимировна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

<u>Актуальность.</u> Производные мочевины – бициклические бисмочевины (ББМ), интенсивно изучаются с 70-х годов XX века. Интерес к этому классу гетероциклических систем вызван, прежде всего, широкими возможностями их использования в фармации в качестве лекарственных средств, в сельском хозяйстве в качестве росторегуляторов, фитогормонов и других отраслях.

ББМ классифицируют на бициклооктановые, бициклононановые, бициклодекановые, пуриновые, спиробициклононановые и спиробициклоундекановые подклассы, координирование их с катионами металлов происходит предпочтительнее через атомы кислорода, чем через атомы азота.

В настоящее время получено большинство ББМ и проводятся их доклинические, биохимические и биологические исследования, но не изучены их координационные соединения (КС). Современные исследования ББМ, как амбидентатных лигандов, проводятся в отрыве от исследований их координирующих способностей и особенностей структурных свойств. Поэтому разработка методологического подхода к синтезу КС ББМ, исследование их состава, строения и свойств являются, безусловно, актуальной задачей.

Работа выполнена в соответствии с планом НИР ТНУ имени В.И. Вернадского по теме «Совершенствование химико-технологических процессов; исследование физико-химических свойств координационных соединений» (рег.номера 0106U003194 и 0111U000644).

Цель работы: Синтез и выявление структурных особенностей комплексов различных металлов с представителем спиробициклоундеканового подкласса – 4,4,10,10-тетраметил-1,3,7,9-тетраазоспиро[5.5]ундекан-2,8-дионом или спирокарбоном. В соответствии с целью были поставлены следующие задачи:

1. Разработать и реализовать на практике методики синтеза КС s-, p-, d-, f- металлов со спирокарбоном.

2. Установить состав и строения, области термостабильности и способ координации спирокарбона в полученных КС методами С, H, N элементного анализа, термогравиметрии, ИКС, РСтА.

3. Определить состав синтезированных соединений в кристаллическом состоянии и водных растворах методами РФА, ЭСДО и ЭСП.

4. Изучить особенности координации спирокарбона катионами металлов различных семейств Периодической системы химических элементов.

<u>Научная новизна:</u> Усовершенствована методика синтеза спирокарбона с выходом 94–96%; впервые получен и структурно охарактеризован его моногидрат. Синтезировано на основе Sk 20 новых КС – 3d-металлов (Sc, Mn(II), Co(II), Cu(II), Zn); нитратов РЗЭ(III) (Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) и Cd(II), а также 3 новые соли спирокарбона. Впервые проведено систематическое и целенаправленное исследование их структур. Установлено, что спирокарбон с большинством d-металлов образует – комплексные металлополимеры, с f-металлами – биядерные комплексы. Крите-

рием типа образующегося комплекса является эффективный ионный радиус центрального атома: если ионный радиус больше 103 пм, то формируется биядерный комплекс, если меньше – полиядерный комплексный металлополимер. Для биядерных комплексов лантанидов выявлен тетрад-эффект, выражающийся в гадолиниевом изломе, из-за чего многие кристаллографические параметры для комплекса гадолиния выпадают из монотонности изменения периодических свойств в ряду лантанидов. Установлено, что КС лантанидов устойчивы в водных растворах, геометрия координационных полиэдров сохраняется и отвечает данным монокристального РСтА, комплексы Co(II) и Cu(II) неустойчивы в водных растворах, и, попадая в данную среду, претерпевают гидратацию, из-за чего происходит изменение геометрии координационного полиэдра. Выявлено, что КС нитрата Co(II) со спирокарбоном проявляет каталитическую активность в жидкофазной реакции окисления кумола молекулярным кислородом при постоянном давлении.

Практическая значимость работы. Расширен круг биядерных и полиядерно-полимерных металлокомплексов с бициклической бисмочевиной – спирокарбоном. Полученные КС могут быть использованы в качестве излучающих материалов в OLED-технологии изготовления дисплеев; КС Mn(II), Co(II), Cu(II), Zn – как стимуляторы развития однодольных растений; КС Mn(II) – как индуктор ризогенеза; комплекс Co(II) – катализатор жидкофазного окисления алкиларенов молекулярным кислородом. Результаты диссертационной работы нашли практическое применение в научных исследованиях химического факультета Таврического национального университета.

Положения, выносимые на защиту:

- использование метода растворимости малорастворимого лиганда позволяет получать координационные соединения нитратов d-металлов и РЗЭ с 4,4,10,10-тетраметил-1,3,7,9-тетраазоспиро[5.5]ундекан-2,8-дионом (спирокарбоном);

- бициклическая бисмочевина – спирокарбон, координируется металлами по карбонильной группе карбамидного фрагмента;

- d-металлы формируют со спирокарбоном комплексные металлополимеры (Sc, Mn(II), Co(II), Cu(II), Cd и Zn), а f-металлы – биядерные комплексы (Pr(III), Nd(III), Sm(III) – Lu(III)). Критерием формирования типа комплекса является эффективный ионный радиус атома – комплексообразователя;

- для КС f-металлов проявляется тетрад-эффект, заключающийся в том, что ряд кристаллографических и структурных параметров КС гадолиния выпадают из монотонного изменения периодических свойств.

<u>Апробация работы</u>: основные результаты работы представлены на международных конференциях: I and II International Conference «Applied Physico-Inorganic Chemistry» (Sevastopol, 2011, 2013); II Міжнародної науково-практичної конференції «Координаційні сполуки: синтез і властивості» (Ніжин, 2013); II Международной научно-технической конференции "Совре-

менные проблемы физики, химии и биологии. ФизХимБио-2013" (Севасто-поль, 2013).

<u>Личный вклад автора.</u> Постановка цели и задач исследований проведены совместно с научным руководителем. Синтезы всех соединений осуществлены автором лично. ИК спектры записывали совместно с к.х.н. Е.М. Софроновой (ГНУ НТК «Институт монокристаллов» НАН Украины, г. Харьков). Рентгеноструктурные и рентгенофазовые исследования проведены совместно с д.х.н., профессором О.В. Шишкиным, ассистентом Р.И. Зубатюком и к.х.н. В.Н. Баумером (ГНУ НТК «Институт монокристаллов» НАН Украины, г. Харьков). Кинетические исследования выполнены совместно с к.х.н. М.А. Компанцом (Институт физико-органической химии и углехимии им. Л.Н. Литвиненко, г. Донецк). Интерпретация и анализ полученных результатов работы выполнены соискателем лично.

Диссертант выражает глубокую благодарность всем соавторам работ.

Публикации: по теме диссертации опубликовано 28 работ, из них 5 статей в реферируемых российских журналах из Перечня ВАК и 10 тезисов докладов на конференциях.

<u>Структура и объем работы.</u> Диссертационная работа изложена на 251 странице печатного текста, состоит из введения, шести глав, выводов, списка литературы (261 источник), содержит 96 рисунков, 35 таблиц и приложения на 87 страницах, содержащие 54 таблицы и 46 рисунков.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность, сформулированы цель и задачи, показаны научная новизна и практическая значимость полученных результатов. Представлены защищаемые положения, приведены данные об апробации работы, структуре и объёме диссертации, основных публикациях.

<u>В первой главе</u> дан обзор современных литературных источников по теме работы, посвященных синтезам, составам и структурам КС катионов s-, p-, d-, f-металлов с мочевиной, N-моно- и N,N-диалкилмочевинами, а также бициклическими мочевинами.

Во второй главе представлены: перечень прекурсоров; методика синтеза моногидрата Sk I с количественным выходом (94–96%), схема 1:

$$3 \xrightarrow{H_3C} CH_3 + 2 \xrightarrow{H_2N} NH_2 \xrightarrow{+H_2SO_4 \kappa o H u.} \xrightarrow{O \qquad H H \ O} NN \xrightarrow{N} NH \\ 0 \xrightarrow{-H \ U \ O} O \xrightarrow{-H \ H \ O} O \xrightarrow{-H \ O} O \xrightarrow{-H \ H \ O} O \xrightarrow{-H \ O} O \xrightarrow$$

методики синтеза солей спирокарбона; а также методики синтезов КС спирокарбона – навеска соли растворяется в ацетоне, затем вносится спирокарбон, смесь перемешивается, фильтруется и оставляется для кристаллизации КС на воздухе, схемы 2–3:

$$\mathbf{M}(\mathbf{NO}_3)_{\mathbf{x}} \cdot \mathbf{nH}_2\mathbf{O} + \mathbf{Sk} \cdot \mathbf{H}_2\mathbf{O} \rightarrow \{ [\mathbf{MSk}_2(\mathbf{H}_2\mathbf{O})_b(\mathbf{NO}_3)_{\mathbf{x}-\mathbf{a}}](\mathbf{NO}_3)_{\mathbf{a}} \}_{\mathbf{n}} + \mathbf{H}_2\mathbf{O}$$
(2),

$$\mathbf{M}(\mathbf{NO}_3)_{\mathbf{x}} \cdot \mathbf{nH}_2\mathbf{O} + \mathbf{Sk} \cdot \mathbf{H}_2\mathbf{O} \rightarrow [\mathbf{MSk}(\mathbf{H}_2\mathbf{O})_{\mathbf{b}}(\mathbf{NO}_3)_{\mathbf{x}-\mathbf{a}}]_2(\mathbf{NO}_3)_{2\mathbf{a}} + \mathbf{H}_2\mathbf{O}$$
(3).

Описаны методы анализов и исследования полученных соединений, материалы и оборудования, использованные в работе: С,Н,N элементный анализ (анализатор EA-3000 фирмы EuroVector (Италия)), ТГА – термогравометрия (Q-дериватограф Паулик-Паулик-Эрдей Q-1500D), ИКС (спектрофотометр SPECTRUM ONE (PerkinElmer)), РСтА – рентгеноструктурный анализ (автоматический четырехкружный дифрактометр «Xcalibur 3»), РФА – рентгенофазовый анализ (дифрактометр Siemens D500), ЭСДО – электронная спектроскопия диффузного отражения (спектрофотометр СФ-14), ЭСП – электронная спектроскопия поглощения (спектрофотометр "Specord M-40").

<u>В третьей главе</u> показаны результаты синтеза и анализа спирокарбона и его солей: моногидрата, монохлорида, мононитрата и тетрайодотеллурата.

Попытки синтезировать комплексные соединения нитратов металлов I-IIA подгрупп Периодической системы химических элементов (Na–Cs, Be– Ba) со спирокарбоном в ацетоне не дали ожидаемых координационных соединений. Основным продуктом оказался ранее не описанный моногид-

рат спирокарбона I. РСтА I показал, что кристаллы Рис. 1. Строение I, по дан- $C_{11}H_{20}N_4O_2 \cdot H_2O$ моноклинные: пр. гр. $P2_1/c$, при ным РСтА. 293К: a=5,7118(7), b=17,842(2), c=13,5905(16)Å, β =91,621(11)°, V=1384,5(3)Å³, d_{расч.}=1,239 г/см³, Z=4, ССDС 911024 (рис. 1).

На ИКС I наблюдаются такие характеристические полосы валентных колебаний, (\bar{v} , см⁻¹): 3416 (H₂O); 3335, 3293, 3218 (NH); 3075, 2991, 2978, 2932

(CH₂, CH₃); 1653 (С=О, амид-І); 1418 (С–N).

Согласно данным ТГА, рисунок 2, дегидратация I происходит в интервале температур 140-240°С и сопровождается эндотермическим эффектом с минимумом на кривой ДТА при 190°С, наблюдаемая потеря массы 7–8% от-

вечает удалению 1 молекулы H_2O ($\Delta m_{pacy.}=7\%$). Плавление безводного спирокарбона происходит в интервале температур 240–260°С и сопровождается эндотермическим эффектом с минимумом при 250°С. Деструкция образца I начинается после 260°С. Полное разложение и выгорание завершается при 600°С.

Для подтверждения чистоты полученного образца **I**, его монофазности и соответствия синтезированного лиганда данным РСтА было проведено уточнение по методу Ритвельда порошковой рентгенограммы. Получены пара-

Рис. 2. ТГА І. метры решетки І (T=293K): a=5,6885(12), b=17,8496(12), c=13,518(3)Å, β =91,449(15)°, V=1372,1(4)Å³. Содержание основной фазы в образце составляет 100±1%.

Попытки синтезировать координационные соединения солей p-элементов со спирокарбоном были осуществлены в системах: $SbCl_3$ -Sk·H₂O-Me₂CO; SnCl₂·2H₂O-Sk·H₂O-Me₂CO; Al(NO₃)₃·9H₂O-Sk·H₂O-Me₂CO; Ga(NO₃)₃·8H₂O-Sk·H₂O-Me₂CO; In(NO₃)₃·4,5H₂O-Sk·H₂O-Me₂CO; Bi(NO₃)₃·5H₂O-Sk·H₂O-Me₂CO и Tel₂-Sk·H₂O-Me₂CO.

Во всех случаях основными продуктами оказались ранее не описанные в литературе кристаллические соли Sk·HCl (II), Sk·HNO3 (III) и сольват с ацетоном $(C_{11}H_{21}N_4O_2^+)_2TeI_4^2$ (CH₃)₂CO (IV).

На ИКС II-IV наблюдаются следующие полосы валентных колебаний, ($\bar{\nu}$, см⁻¹): II – 3407 (OH), 3268, 3117 (NH), 3023, 2981, 2970 (CH₂, CH₃), 1694, 1636, 1607 (C=O, амид-I); 1415(C-N); III - 3334, 3313 (OH), 3236, 3205 (NH), 3078, 2972 (CH₂, CH₃), 1703, 1667, 1646, 1625 (С=О, амид-I), 1412 (С-N); IV -3407 (ОН), 3265 (NH), 3117, 2991, 2978 (CH₂, CH₃), Рис. 3. Строение II, по дан-

1694, 1636, 1607 (С=О, амид-І), 1415 (С-N). ным РСтА.

Соль II – монохлорид спирокарбона, кристаллы $C_{11}H_{21}N_4O_2^+ \cdot Cl^-$ тетрагональные: пр. гр. P43, при 298K $a=6,4134(3), c=34,292(2)Å, V=1410,47(14)Å^3, d_{nacy}=1,303$ г/см³, Z=4, ССDС 893220, рисунок 3.

Соль III – мононитрат спирокарбона, кристаллы III $C_{11}H_{21}N_4O_2^+ \cdot NO_3^-$ триклинные: пр. гр. Р**1**, при 298K

Рис. 4. Строение III, по данным РСтА.

 $a=8,7614(14), b=9,3904(18), c=10,028(2)Å, \alpha=63,27(2),$ $\beta = 78,591(16), \gamma = 84,308(15)^{\circ}, V = 722,3(2)^{\circ}A^{3}, d_{pacy} = 1,40$ г/см³, Z=2, ССDС 893221, (рисунок 4).

тетрайодотеллурат спирокарбона. Соль IV IV кристаллы (C₁₁H₂₁N₄O₂⁺)₂TeL²⁻·(CH₃)₂CO триклинные: пр. гр. Рī,

при 100К a=10,4630(4), b=11,9372(6), c=16,4118(5)Å, $\alpha = 72,058(3),$ $\beta = 76,406(3),$ $\gamma = 87.029(3)^{\circ}$ V=1895,04(12)Å³, d_{расч}=2,06 г/см³, Z=2, CCDC 893222. В независимой части элементарной ячейки находятся: плоско-квадратный ион TeL²⁻, два катиона SkH⁺ и сольватированная молекула ацетона (рисунок 5).

Невозможность синтеза координационных со- Рис. 5. Строение IV, по данединений р-металлов с Sk в среде ацетона, объясняным РСтА. ется тем, что высвобождаемая вода из кристаллогидратов приводит к гидро-

лизу катионов металлов и образованию катионов гидроксония в системе. Снижение pH системы приводит к протонизации карбонильной группы спи-

рокарбона с образованием катиона спирокарбония – SkH⁺, заряд которого компенсируется имеющимися анионами (схема 4).

В четвёртой главе представлены результаты синтеза и анализа КС d-металлов

со спирокарбоном. Исследование комплексообразования проведены в системах $M(NO_3)_x$ nH₂O или MCl_x -Sk H₂O-(CH₃)₂CO. Из d-металлов выбраны преимущественно 3d-металлы(II), как наиболее доступные Mn, Co, Cu, Zn, Sc - имеющий высокую комплексообразующую способность за счет вакантных dорбиталей. Как групповой аналог цинка – Cd, и аналоги Sc – Y и La.

Для полученных комплексов V–XII проведен термогравиметрический анализ, результаты представлены в табл. 1.

Таблица 1

Данные термогравиметрического исследования комплексов V–XII										
	Комплекс (металл)									
Процесс	V (Sc)	VI (Mn)	VII (Co)	VIII (Cu)	IX (Zn)	$\mathbf{X}(\mathbf{Y})$	XI (Cd)	XII (La)		
	Температурный интервал, °С									
Дегидратация	100-170	100–180	100-170	90–130	-	100–180	120–245	100-200		
Эффект*, °С	↓ (150)	↓ (130)	↓ (140)	↓ (120)	-	↓(170)	↓ (160)	↓ (180)		
$\Delta m_{ m эксп.}$, %	1–9	6	4	2–3	-	1	1–5	6		
Число моле-	6	2	3	1		1	1	1		
кул H2O	0	2	5	1	-	1	1	4		
$\Delta m_{\text{pacy.}}, \%$	8	5	4	3	-	2	4	6		
Деструкция	180	180	170	130	200	180	245	200		

*↓ - эндотермический эффект (минимум).

Из данных табл. 1, термолиз комплексов носит аналогичный характер, сравнительно высокие температуры процессов дегидратации соединений позволяют говорить о том, что удаляемая вода является координированной, а не сольватированной.

На ИК спектрах комплексов V–XII наблюдаются следующие характеристические полосы валентных колебаний, табл. 2.

Таблица 2	2
-----------	---

o meetine noise b meetipax v An												
	\mathbf{V}	VI	VII	VIII	IX	Χ	XI	XII				
Отнесение	$\bar{\mathbf{v}}, \mathbf{c}\mathbf{M}^{-1}$											
$v_{s+as}(H_2O)$	3750	3902	3749, 3737	3654	-	3479	3631, 3544	3683				
$v_{s+as}(NH)$	3356, 3326	3379, 3322	3390, 3334	3295	3377, 3331	3394, 3355	3467	3419, 3349				
v(амид-I)	1631	1674, 1635	1644, 1636	1626	1641	1646	1763, 1630	1627				
v(NO ₃)	1385, 1039, 821	1395, 1370, 1336, 1046, 1029, 1014	1385, 1046, 1511, 1046, 1029, 1014	1385, 1052 825, 714	-	1387, 1056, 1520, 1041, 822, 707	1432, 1385, 1050, 1030, 825	1403, 1505, 1249, 1035, 825, 766				

Отнесение полос в ИК спектрах V-XII

При сравнении валентных колебаний v(C=O, амид-I), для V–XII с Sk, видны смещения на 7-27 см⁻¹ в длинноволновую область из-за координирования молекул Sk атомами d-металлов.

Проведен РСтА комплексов V–XII, значения основных параметров представлены в табл. 3.

КС нитрата скандия с Sk – координационный металлополимер { $[Sc_2(Sk)_3(H_2O)_6](NO_3)_6$ }_n (V). Атом скандия в структуре V координирован тремя атомами кислорода трех молекул спирокарбона, и тремя молекулами воды, КЧ=6, координационный полиэдр – немного искаженный октаэдр (рисунок 6). Нитрат-анионы находятся за сферой координации.

параметры элементарных ячеек комплексов V–AII, по данным РСТА											
Topologra	Комплекс (металл)										
параметр	V (Sc)	VII (Co)	XI (Cd)	VI (Mn)	VIII (Cu)	IX (Zn)	$\mathbf{X}(\mathbf{Y})$	XII (La)			
Пр.гр.	$P \overline{4} 2_1 c$	P2/c	$P\overline{1}$	$P2_1/c$	P2/c	P21	$P2_1/n$	$P2_1/n$			
<i>a</i> , Å	21,979	26,128	8,997	12,377	12,524	6,212	6,435	14,240			
<i>b</i> , Å	21,979	7,176	9,601	14,878	7,331	11,276	15,574	7,385			
<i>c</i> , Å	12,749	17,182	12,513	18,138	16,893	11,387	21,666	21,022			
β , град	90,00	105,042	73,465	106,611	92,569	94,99	94,72	101,957			
<i>V</i> , Å ³	6159,6	3111,43	918,26	3200,70	1549,38	794,6	2163,9	2162,64			
Z	4	2	2	4	2	2	2	2			
CCDC	925791	925792	903387	876570	903386	877812	903389	903388			

КС нитрата марганца(II) с Sk – координационный металлополимер ${[Mn(Sk)_2(H_2O)_2](NO_3)_2}_n$ (VI). Атом марганца координирован 4 атомами кислорода 4 молекул спирокарбона, а также двумя молекулами воды, КЧ=6, координационный полиэдр – искаженный октаэдр (рисунок 7). Нитрат-анионы некоординированные. По данным РФА в образце VI при-

Таблица 3

сутствует небольшое количество рамсделлита Рис. 7. Строение VI, по данным РСтА. MnO₂ (~0,9 мас.%).

На ЭСДО порошка и ЭСП 10⁻² М водного раствора VI наблюдаются полосы: 33113 см⁻¹ перенос заряда О→d-Mn²⁺ (ЭСП) и 23256 см⁻¹ переход ${}^{6}S \rightarrow {}^{4}T_{2g}$. Данные переходы отвечают шестикоординированному октаэдрическому полиэдру марганца(II) в твердом виде и водном растворе комплекса и согласуются с результатами РСтА.

КС нитрата кобальта(II) с Sk – координаметаллополимер ционный ${[Co_2Sk_3(H_2O)_3](NO_3)_4}_n$ (VII). РСтА монокристалла VII показал, что в кристалле присутствуют два типа металлополимерных цепей, в которых атомы кобальта координированы атомами кислорода карбонильных групп Sk и молекулами воды (рисунок 8). Атом Со(1) координирован четырьмя атомами кислорода четырех молекул спирокарбона и молекулой воды, КЧ=5, координационный полиэдр – тригональная бипирамида. Атом Со(2) координирован 4 атомами кислорода

Sk, а также двумя молекулами воды, КЧ=6, координационный полиэдр – ок-

таэдр. Нитрат-анионы находятся за сферой координации. Проведено уточнения по данным РФА VII, содержание основной фазы составляет 100±1%.

На ЭСДО порошка VII наблюдаются полосы: 20243 см⁻¹ (${}^{4}T_{1g}(P) \rightarrow {}^{4}T_{1g}$), 19305 см⁻¹ (${}^{2}Eg({}^{2}T_{2g}) \rightarrow {}^{2}T_{1}$), 18182 см⁻¹ (${}^{4}E_{"}(P) \rightarrow {}^{4}E(P)$), 14577 см⁻¹ (${}^{2}Eg({}^{2}T_{2g}) \rightarrow {}^{2}A_{1g}$). Широкая полоса при 18182 см⁻¹ вероятно содержит три перехода на уровень ${}^{4}P$, что отвечает тригонально-пирамидальной координации полиэдра кобальта(II). На ЭСП 10⁻² М водного раствора VII присутствует полоса при 33113 см⁻¹ – *перенос заряда О* $\rightarrow d$ -*Co*²⁺ и 19493 см⁻¹ переход ${}^{4}T_{1g}(P) \rightarrow {}^{4}T_{1g}$.

Данный переход отвечает шестикоординированному октаэдрическому состоянию полиэдра кобальта(II) в водном растворе комплекса. Это объясняется тем, что в водном растворе происходит гидратация пятикоординирован-

ного кобальта(II) в шестикоординированное состояние, без сохранения геометрии координационного полиэдра (схема 5).

КС нитрата меди(II) с Sk – координационный металлополимер {[Cu(Sk)₂(H₂O)](NO₃)₂}_n (VIII). РСтА монокристалла VIII показал, что атом меди координирован четырьмя атомами кислорода молекул спирокарбона, и молекулой воды (рисунок 9), КЧ=5, координационный полиэдр меди – тригональная бипирамида.

На ЭСДО порошка VIII наблюдаются переходы: 23256 см⁻¹ и 18182 см⁻¹ ($z^2 \rightarrow xy$), они возможно отвечают пятикоординирова бипирамидальным полиэлром. На ЭСП 10⁻²

Рис. 9. Строение **VIII**, по данным РСтА.

они возможно отвечают пятикоординированному состоянию с тригональнобипирамидальным полиэдром. На ЭСП 10⁻² М водного раствора VIII есть полоса при 32895 см⁻¹ – *перенос заряда О*→*d*-*Cu*²⁺ и 12595 см⁻¹ переход t_{2g} → e_g . Данный переход отвечает шестикоординированному октаэдрическому состоянию полиэдра меди(II). При сравнении результатов видно, что комплекс {[Cu(Sk)₂(H₂O)](NO₃)₂}_n при растворении в воде гидратируется, поэтому гео-

Рис. 10. Строение **IX**, по данным РСтА.

метрия полиэдра меди нарушается.

КС хлорида цинка с Sk – координационный металлополимер [ZnSkCl₂]_n (IX). Координационный полиэдр цинка – тетраэдр, в вершинах которого расположены два атома хлора и карбонильные атомы кислорода двух молекул спирокарбона (рисунок 10). По данным РФА, параметры решетки (T=293K): a=6,20369(11), b=11,23336(18), c=11,36013(16)Å, β =95,3001(11)°, V=788,28(2)Å³.

Содержание основной фазы в образце составляет 100±1%.

КС нитрата иттрия с Sk – биядерный комплекс ($[YSk(H_2O)_3(NO_3)_2]NO_3)_2$ (X). По данным РСтА, атом иттрия координирован двумя атомами кислорода двух молекул Sk, двумя бидентатными нитрат-анионами и тремя молекулами воды. Один из нитрат-анионов находится за сферой координации, КЧ=9, координационный полиэдр – значительно искаженная трехшапочная тригональная призма (рисунок 11). Уточнение рентгенограммы методом Рит- Рис. 11. Строение Х, по данвельда по данным РФА показало, что на рентгено-

ным РСтА.

грамме на уровне фона наблюдается ряд слабых примесных линий, содержание основной фазы составляет 98±2%.

Рис. 12. Строение XI, по данным РСтА.

КС нитрата кадмия с Sk – координационный металлополимер ${[CdSk(H_2O)(NO_3)_2]}_n$ (XI). По данным РСтА, в металлополимере биядерные фрагменты с катионами кадмия соединены между собой двойными цепочками молекул спирокарбона. Каждый ион кадмия координирован тремя атомами кислорода трех молекул Sk, и молекулой воды, бидентатными и монодентатными нитрат-анионами (рисунок 12). КЧ=7, координационный полиэдр – сильно искаженная пентаго-

нальная бипирамида. На рентгенограмме РФА наблюдается ряд линий, которые отвечают мононитрату Sk (структура III), уточнение по методу Ритвельда показало, что образец XI содержит 91,4 вес.% основного вещества XI и 8,6% примесей C₁₁H₂₀N₄O₂·HNO₃ (III).

КС нитрата лантана с Sk – биядерный комплекс $[LaSk(H_2O)_2(NO_3)_3]_2$ (XII). Рентгеноструктурное исследование монокристалла показало, что атом лантана координирован двумя атомами кислорода двух молекул спирокарбона, тремя бидентатными нитрат-анионами и двумя молекулами воды, КЧ=10, координационный полиэдр – неправильный десятиугольник (рисунок 12).

В пятой главе представлены результаты синтеза и анализа КС спирокарбона с солями f-металлов.

Рис. 13. Строение XII, по данным РСтА.

комплексов f-металлов Синтезы с Sk проведены в системах $M(NO_3)_3$ nH₂O-Sk H₂O-(CH₃)₂CO, из лантанидов(III) выбраны – Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb и Lu. Данные металлы были избраны из соображений доступности и хорошей растворимости их нитратов в ацетоне, а также потому, что они являются типичными комплексообразователями за счет вакантных d- и f-орбиталей.

КС нитратов Pr(III) XIII, Nd(III) XIV и Gd(III) XVII – биядерные комплексы [LnSk(H₂O)₃(NO₃)₂]₂(NO₃)₂, кристаллы моноклинные, пр. гр. P2₁/n, Z=2, CCDC 924475, 876569, 924472.

КС нитратов Sm(III), Eu(III), Tb(III), Dy(III), Ho(III), Er(III), Tm(III), Yb(III) и Lu(III) – биядерные комплексы [LnSk(H₂O)(NO₃)₃]₂ (**XV, XVI, XVIII–XXIV**), кристаллы моноклинные, пр. гр. P2₁/c, Z=2, CCDC 924470, 924469, 924473, 924474, 924467, 925790, 924466, 925788, 925789.

Основные характеристические полосы валентных колебаний в ИК спектрах **XIII–XXIV** приведены в табл. 4.

При сравнении валентных колебаний v(C=O, амид-I), для Sk и XIII– XXIV видно смещение на 1-12 см⁻¹ в длинноволновую область из-за координирования молекул Sk атомами лантанидов.

Таблица 4

0	XIII	XIV	XV	XVI	XVII	XVIII	XIX	XX	XXI	XXII	XXIII	XXIV
Отнесение						v , (см-1					
$v_{s+as}(H_2O)$	3927	3902	3929	3930	3927	3931	3933	3467	3932	3749	3677	3748
	3391,	3391,	3392,	3392,	3392,	3392,	3393,	3394,	3392,	3382,	2254	3382,
$V_{s+as}(IN\Pi)$	3360	3361	3358	3357	3357	3356	3356	3356	3355	3362	3334	3363
v(амид-I)	1646	1646	1642	1646	1644	1645	1641	1641	1645	1652	1643	1652
v(C-N)	1481	1481	1483	1484	1485	1486	1486	1488	1488	1489	1490	1489
v(NO ₃)	1516, 1385, 1054, 821, 704	1516, 1386, 1055, 1039, 822, 705	1039, 814, 705	1040, 814, 706	1516, 1386, 1056, 1041, 813, 706	1041, 813, 706	1517, 1041, 813, 706	1517, 1257, 1042, 822, 706	1531, 1257, 1037, 820, 713	1533, 1256, 1036, 814, 827	1519, 1253, 1037, 817, 826	1533, 1255, 1036, 814, 826

Отнесение полос в ИК спектрах XIII-XXIV

ТГА XIII, XIV и XVII (Pr, Nd, Gd) показал, что дегидратация комплексов происходит в интервале температур 100–200°С, и сопровождается эндотермическим эффектом с минимумом на кривой ДТА при 160–170°С, наблюдаемые потери 8–9% масс отвечают удалению 6 молекул H₂O. Деструкция комплексов начинается при 180–200°С.

ТГА XV–XVI, XVIII–XXIV (Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb и Lu) показал, что процессы дегидратации для всех комплексов подобны, происходят в интервале температур 100–230°С и сопровождаются эндотермическими эффектами с минимумами на кривой ДТА при 160–190°С, наблюдаемые потери масс отвечают удалению 6 молекул H₂O. Деструкция комплексов начинается при 200–210°С.

По данным РСтА КС XV–XVI, XVIII–XXIV изоструктурны, и являются биядерными комплексами. Атомы лантанидов координированы двумя атомами кислорода двух молекул Sk, тремя бидентатными нитрат-анионами и одной молекулой воды. КЧ лантанидов равны 9, координационные полиэдры – значительно искаженные трехшапочные тригональные призмы, рисунок 14. Рентгеноструктурное исследование КС XIII, XIV и XVII показало, что комплексы биядерные и изоструктурны. Атомы лантанидов координированы двумя атомами кислорода двух молекул Sk, двумя бидентатными нитрат-анионами и тремя молекулами

воды. Один из нитратанионов находится во внешний координационной сфере металла. КЧ

ной сфере металла. КЧ **Рис. 14.** Строение **XV**– лантанидов – 9, коорди- **XVI**, **XVIII–XXIV**, по даннационные полиэдры – ным РСтА. искаженные трехшапочные тригональные приз-

мы, рисунок 15. Проведен РФА порошков XX– XXII и XXIV, содержание основных фаз 100±1%.

Рис. 15. Строение **XIII**, **XIV** и **XVII**, по данным РСтА.

Наблюдаемые переходы в ЭСП 10⁻² М водных растворах и ЭСДО порошков XIII-XVI,

XIX–XX и **XXI–XXII** совпадают табл. 5. Полученные данные указывают на то, что в воде сохраняется геометрия координационных полиэдров и сами КС.

Таблица 5

1	1		,
Соединение / атом <i>Ln</i>	ЭСП, <i>v</i> /v, см ⁻¹ /нм	ЭСДО порошка, <i>v̄/v</i> , см ⁻¹ /нм	Переход
XIII / Pr	22579/443 и 21373/468	22371/448 и 21231/471	$^{3}H_{4} \rightarrow ^{3}P_{2}$ и $^{3}H_{4} \rightarrow ^{3}P_{1}$
XIV / Nd	17360/576 и 13480/742	17241/580 и 13532/739	⁴ <i>I</i> 9/2 \rightarrow ^{2,4} <i>G</i> 7/2, 5/2 и ⁴ <i>I</i> 9/2 \rightarrow ⁴ <i>F</i> 7/2
XV / Sm	24880/402 и 19920/502	24691/405 и 19920/502	${}^{6}H_{5/2} \rightarrow {}^{6}P_{3/2}$ и ${}^{6}H_{5/2} \rightarrow {}^{4}F_{3/2}$
XVI / Eu	21505/465 и 19048/525	21505/465 и 19084/524	${}^7F_0 \rightarrow {}^5D_2$ и ${}^7F_0 \rightarrow {}^5D_1$
XIX / Dy	23419/427 и 21186/472	23474/426 и 21141/473	${}^{6}H_{15/2} \rightarrow {}^{4}G_{11/2}$ и ${}^{6}H_{15/2} \rightarrow {}^{4}F_{9/2}$
XX / Ho	22160/451 и 18600/538	22124/452 и 18519/540	${}^{5}I_{8} \rightarrow {}^{5}G_{6}$ и ${}^{5}I_{8} \rightarrow {}^{5}F_{4}$
XXI / Er	20520/487 и 19120/523	20492/488 и 19157/522	⁴ $I_{15/2} \rightarrow {}^{4}F_{7/2}$ и ${}^{4}I_{15/2} \rightarrow {}^{2}H_{11/2}$
XXII / Tm	15129/661 и 14640/683	15060/664 и 14493/690	$^{3}H_{6} \rightarrow ^{3}F_{2}$ и $^{3}H_{6} \rightarrow ^{3}F_{3}$

Характеристические полосы ЭСП и ЭСДО для XIII-XVI, XIX-XXII

В шестой главе на основании полученных данных приведены закономерности и некоторые свойства, наблюдаемые у КС спирокарбона. Так, природа центрального атома в полученных координационных соединениях определяет тип образования комплекса: для р-металлов характерно образование солей Sk, для d-металлов – координационных металлополимеров, для fметаллов – биядерных комплексов. Причиной этого в случае комплексов d- и f-металлов является эффективный ионный радиус металлов, причем предельное значение примерно равно 103 пм. Если ион металла имеет меньшее значение радиуса, чем 103 пм – образуется координационный металлополимер, большее – биядерный комплекс.

Обращает на себя внимание то, что для синтезированных КС fметаллов наблюдается немонотонность изменения объема элементарной 😄 ячейки, расстояния между атомами лантанидов Ln...Ln и длины связи между атомами Ln и молекулой воды полученных XIIIсоединениях В **XXIV** (рисунки 16–18).

Наблюдаемое нарушение монотонности изменения периодических

Рис. 17. Зависимость расстояния Ln...Ln в XIII—XXIV от порядкового номера атома лантанида (r=f(Z)).

свойств в ряде лантанидов на атоме гадолиния является следствием проявления вторичной периодично- VII Со(II)+02

сти, так называемого тетрадэффекта.

Полученные КС 3dметаллов были исследованы на каталитическую активность в жидкофазной реакции окисления кумола моле-

кулярным кислородом, с помощью газоволюмометрии, при постоянном дав-

Рис. 19. Зависимость $[O_2]$ пошедшего на окисление кумола, от времени, при различном содержании **VII** и $t=75^{\circ}C$.

Рис. 16. Зависимость объема элементарной ячейки V=f(Z) от порядкового номера атома лантанида комплексов **XIII–XXIV**.

Рис. 18. Зависимость длины связи $d(Ln \leftarrow OH_2)$, Å в **XIII–XXIV** от порядкового номера атома лантанида (d=f(Z)).

лении. Из всех синтезированных КС каталитическую активность проявил комплекс Со – VII в среде ацетонитрила (схема 6).

Исследование проводили при температурах 50, 60, 70, 75°С и различных концентрациях VII, так же для сравнения изучалось совместное каталитическое действие VII, различных концентраций, и NHPI (N-гидроксифталимид), при 75°С, рисунок 19. Анализируя все полученные кинетические данные можно сказать, что

координационный металлополимер VII является катализатором в жидкофаз-

ной реакции окисления кумола молекулярным кислородом в среде ацетонитрила, и превосходит по активности аналоговый катализатор NHPI.

Проведены исследования рострегулирующей активности КС 3dметаллов на семенах томатов (Solanum lycopersicum L.), озимой пшеницы (Triticum aestivum L.), подсолнечника (Helianthus annuus L.) и озимого ячменя (Hordeum L.). Из КС 3d-металлов были выбраны: VI, VII, VIII и IX. Получены значения биометрических параметров с доверительными интервалами при n=30 и с вероятностью 95 % (p=0,05). Выявлено, что более выраженное ростостимулирующее действие комплексы спирокарбона оказывают на однодольные, чем на двудольные растения. При концентрации 0,1% водного раствора происходит ингибирование роста и развития проростков, а при концентрация 0,01% – стимуляция.

Исследован ризогенез у черенков фасоли обыкновенной (*Phaseolus Vulgaris L.*) под воздействием спирокарбона и его Mn и Zn комплексов (VI и IX). Спирокарбон и его KC VI проявили выраженную ауксинподобную активность, как индукторы образования корней на черенках фасоли (ризогенез): в 0,01% растворе Sk, корни появились на 2–3 сутки укоренения со средней длиной придаточных корней к 7 дню – 0,5 см; в 0,01% растворе VI корни появились также на 2–3 сутки укоренения со средней к 7 дню – 0,7 см. В контрольном варианте укоренение наблюдалось только на 3–4 день со средней длиной придаточных корней к 7 дню – 0,3 см. Наблюдаемая зона ризогенеза в растворе спирокарбона и VI в 1,3 и 1,6 раза больше по сравнению с контролем. Средняя длина корня для спирокарбона и VI в 1,6 и 2,3 раза больше по сравнению с контрольными значениями.

выводы

1. Разработаны методы синтеза комплексов с представителем спиробициклоундеканового подкласса – 4,4,10,10-тетраметил-1,3,7,9-тетраазоспиро [5.5]ундекан-2,8-дионом (спирокарбоном). Синтезировано 20 новых комплексов нитратов 3d-металлов (Sc, Mn(II), Co(II), Cu(II)); нитратов РЗЭ(III) (Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), Cd(II) и хлорида Zn. Соединения охарактеризованы методами ИК спектроскопии и рентгеновской дифракции.

2. Установлено, что синтезировать КС s- и p-металлов в среде ацетона при прямом взаимодействии лиганда и неорганической соли невозможно. Основными продуктами являются соли спирокарбона и его моногидрат.

3. На основании рентгеноструктурного анализа полученных КС установлено, что комплексы Y и Ln имеют биядерное строение, и состоят из центросимметричных молекул. Для лантана реализуется КЧ=10, полиэдр – неправильный десятивершинник, для остальных металлов КЧ=9, полиэдр – искаженная трехшапочная тригональная призма. КС нитратов Sc, Mn(II), Co(II), Cu(II), Cd и хлорида цинка имеют координационное металлополимерное строение. КС лантанидов имеют биядерное, центросимметричное строение. 4. Выявлено, что амбидентатный лиганд спирокарбон, является бидентатным лигандом с мостиковой функцией, и координируется только через атомы кислорода карбонильных групп мочевинных фрагментов.

5. Установлено, что в большинстве случаев d-металлы формируют со спирокарбоном комплексные металлополимеры (Sc, Mn(II), Co(II), Cu(II), Cd и Zn), а f-металлы – биядерные комплексы (Pr(III), Nd(III), Sm(III) – Lu(III)). Критерием формирования типа комплекса является эффективный ионный радиус атома – комплексообразователя, граничным значением является значение 103 пм, если центральный атом имеет меньшее значение, то формируется металлополимер, большее значение – биядерный комплекс.

6. Для КС лантанидов выявлен тетрад-эффект, выражающийся в гадолиниевом изломе, из-за чего многие кристаллографические и структурные параметры комплекса гадолиния выпадают из монотонности изменения периодических свойств.

Основное содержание диссертации изложено в следующих работах

- 1. Синтез и исследование молекулярной и кристаллической структуры координационного металлополимера нитрата скандия(III) с 4,4,10,10-тетраметил-1,3,7,9тетраазоспиро[5.5]ундекан-2,8-дионом / Е.Е. Нетреба // Журнал неорганической химии. – 2014. – Т. 59, № 4. – С. 470-476. DOI: 10.7868/S0044457X14010115
- 2. Исследование новой молекулярно-кристаллической структуры координационного полимера нитрата марганца (II) с 4,4,10,10-тетраметил-1,3,7,9-тетраазоспиро [5.5] ундекан-2,8-дионом / **Е.Е. Нетреба**, А.М. Федоренко // Журнал структурной химии. – 2013. – Т. 54, № 2. – С. 312-316. DOI: 10.1134/S0022476613020145
- 3. Исследование молекулярной и кристаллической структуры нового координационного полимера нитрата меди(II) с 4,4,10,10-тетраметил-1,3,7,9-тетраазоспиро[5.5]ундекан-2,8-дионом / Е.Е. Нетреба // Журнал структурной химии. 2013. Т. 54, № 5. С. 907-913. DOI: 10.1134/S0022476613050156
- 4. Синтез и молекулярная и кристаллическая структура биядерных комплексов нитратов Sm(III), Eu(III), Gd(III), Tb(III), Dy(III) с 4,4,10,10-тетраметил-1,3,7,9тетраазоспиро[5.5]ундекан-2,8-дионом / Е.Е. Нетреба // Координационная химия. – 2013. – Т. 39, № 10. – С. 613-627. DOI: 10.1134/S1070328413100047
- 5. Синтез и исследование молекулярной и кристаллической структуры биядерного комплекса нитрата лютеция(III) с 4,4,10,10-тетраметил-1,3,7,9-тетраазоспиро[5.5]ундекан-2,8-дионом / Е.Е. Нетреба // Вестник СПбГУ. Серия 4. 2013. № 4. С. 131-137.
- 6. Синтез и исследование молекулярно-кристаллической структуры 4,4,10,10-тетраметил-1,3,7,9-тетраазоспиро[5.5]ундекан-2,8-диона (спирокарбона – Sk) / **Е.Е. Нетреба**, А.М. Федоренко, А.А. Павлов // Научный вестник Ужгородского национального университета. Серия химия. – 2011. – Т. 25, № 1 – С. 107-115.
- Синтез и исследование молекулярно-кристаллической структуры координационного полимера хлорида цинка с 4,4,10,10-тетраметил-1,3,7,9-тетраазоспиро[5.5]ундекан-2,8дионом (спирокарбоном – Sk) / Е.Е. Нетреба, А.М. Федоренко // Ученые записки Таврического национального университета им. В. И. Вернадского. Серия «Биология, химия». – 2012. – Т. 25(64), № 2. – С. 252-258.
- 8. Синтез и исследование молекулярной и кристаллической структуры координационного соединения нитрата неодима(III) с 4,4,10,10-тетраметил-1,3,7,9-

тетраазоспиро[5.5]ундекан-2,8-дионом (спирокарбоном – Sk) / **Е.Е. Нетреба** // Вестник Харьковского национального университета. – 2012. – Т. 21(44), № 1026. – С. 319-326.

- 9. Синтез и исследование молекулярной и кристаллической структуры координационного соединения нитрата иттрия(III) с 4,4,10,10-тетраметил-1,3,7,9-тетраазоспиро [5.5]ундекан-2,8-дионом / Е.Е. Нетреба // Научный вестник Ужгородского национального университета. Серия химия. 2012. Вып. № 2(28). С. 40-47.
- 10. Синтез и исследование молекулярной и кристаллической структуры координационного соединения нитрата лантана(III) с 4,4,10,10-тетраметил-1,3,7,9-тетраазоспиро[5.5]ундекан-2,8-дионом / Е.Е. Нетреба, А.М. Федоренко // Ученые записки Таврического национального университета им. В. И. Вернадского. Серия «Биология, химия». 2012. Т. 25(64), № 4. С. 255-263.
- 11. Синтез и исследование молекулярной и кристаллической структуры координационного металлополимера нитрата кадмия с 4,4,10,10-тетраметил-1,3,7,9тетраазоспиро[5.5]ундекан-2,8-дионом / Е.Е. Нетреба // Украинский химический журнал. – 2013. – Т. 79, № 2. – С. 88-94.
- Синтез и исследование молекулярной и кристаллической структуры биядерного комплекса нитрата празеодима(III) с 4,4,10,10-тетраметил-1,3,7,9-тетраазоспиро [5.5]ундекан-2,8-дионом / Е.Е. Нетреба // Ученые записки Таврического национального университета им. В. И. Вернадского. Серия «Биология, химия». 2013. Т. 26(65), № 1. С. 323-331.
- Синтез и исследование молекулярной и кристаллической структуры координационного металлополимера нитрата кобальта(II) с 4,4,10,10-тетраметил-1,3,7,9тетраазоспиро[5.5]ундекан-2,8-дионом / Е.Е. Нетреба // Вопросы химии и химической технологии. – 2013. – № 2. – С. 76-80.
- 14. Исследования на растительных объектах рострегулирующей активности некоторых координационных соединений спирокарбона / Е.Е. Нетреба, А.М. Федоренко, А.В. Максименко // Черноморский ботанический журнал. –2013. – Т. 9, № 2. – С. 203-213.
- 15. Синтез и исследование молекулярной и кристаллической структуры биядерного комплекса нитрата гольмия(III) с 4,4,10,10-тетраметил-1,3,7,9-тетраазоспиро[5.5]ундекан-2,8-дионом / Е.Е. Нетреба // Ученые записки Таврического национального университета им. В.И. Вернадского. Серия «Биология, химия». – 2013. – Т. 26(65), № 2. – С. 239-247.
- 16. Синтез и исследование молекулярной и кристаллической структуры биядерного комплекса нитрата эрбия(III) с 4,4,10,10-тетраметил-1,3,7,9-тетраазоспиро[5.5]ундекан-2,8дионом / **Е.Е. Нетреба** // Вестник Белорусского государственного университета. Серия 2. – 2013. – Вып. № 2. – С. 18-23.
- 17. Синтез и исследование молекулярной и кристаллической структуры биядерного комплекса нитрата туллия(III) с 4,4,10,10-тетраметил-1,3,7,9-тетраазоспиро[5.5]ундекан-2,8-дионом / Е.Е. Нетреба // Ученые записки Таврического национального университета им. В. И. Вернадского. Серия «Биология, химия». 2013. Т. 26(65), № 3. С. 305-313.
- 18. Синтез и исследование молекулярной и кристаллической структуры биядерного комплекса нитрата иттербия(III) с 4,4,10,10-тетраметил-1,3,7,9-тетраазоспиро[5.5]ундекан-2,8-дионом / Е.Е. Нетреба // Научный вестник Ужгородского национального университета. Серия химия. 2013. Вып. №2(30). С. 32-36.
- Нетреба Е.Е. Развитие синтеза координационных соединений спирокарбона методом растворимости малорастворимого лиганда / Е.Е. Нетреба, А.М. Федоренко, В.М. Повстяной // XVIII Украинская конференция по неорганической химии с участием зарубежных ученых, в рамках Международного года химии ООН: сб. тезисов. – 2011. – Харьков. – С. 103.

- Нетреба Е.Е. Анализ и развитие методов синтеза координационных соединений спирокарбона и биометаллов / Е.Е. Нетреба, А.М. Федоренко, В.М. Повстяной // Прикладная физико-неорганическая химия: сб. материалов I Международной конференции. – 2011. – Севастополь. – С. 44.
- 21. **Нетреба Е.Е.** Дентатность 4,4,10,10-тетраметил-1,3,7,9-тетраазоспиро[5.5]ундекан-2,8диона (спирокарбона) в реакции с нитратом уранила в среде ацетона / **Е.Е. Нетреба** // Координационные соединения: синтез и свойства: сб. тезисов II Международной научно-практической конференции. – 2013. – Нежин – С. 45.
- Netreba E.E. Features of the lanthanide coordination with bicyclic bis-ureas spirokarbone / E.E. Netreba // II International Conference «Applied Physico-Inorganic Chemistry». 2013. Sevastopol. P. 109-110.
- 23. Нетреба Е.Е. Координационные металлополимеры 3d-металлов (Sc, Mn, Co, Cu) с бициклобисмочевиной спирокарбоном / Е.Е. Нетреба // «ВМС-2013»: сб. тезисов XIII Украинская конференция по высокомолекулярным соединениям. – 2013. – Киев. – С. 495-497.
- 24. Нетреба Е.Е. Исследование ризогенеза у фасоли обыкновенной (*Phaseolus Vulgaris L.*) сорта Сахарная под воздействием координационных соединений цинка и марганца(II) со спирокарбоном / Е.Е. Нетреба, А.М. Федоренко, А.В. Максименко // Современные проблемы физики, химии и биологии. «Фізхімбіо-2013»: сб. материалов II Международной научно-технической конференции. 2013. Севастополь. С. 106-108.
- 25. Нетреба Е.Е. Исследование дентатности спирокарбона (Sk) в реакции с безводным Zn(II) хлоридом в среде ацетона / Е.Е. Нетреба // Синтез и пути использования новых химических веществ : сб. тезисов V научно-практической конференции студентов и молодых ученых химиков-органиков. – Херсон, 2012. – С. 24.
- 26. Нетреба Е.Е. Синтез и исследование координационных соединений лантана(III) с спирокарбоном / Е.Е. Нетреба, А.М. Федоренко, Н.Н. Пасхалов // Синтез и пути использования новых химических веществ : сб. тезисов IV научно-практической конференции студентов и молодых ученых химиков-органиков. Херсон, 2011. С. 22.
- 27. Нетреба Е.Е. Особенности строения координационных соединений нитратов fметаллов с 4,4,10,10-тетраметил-1,3,7,9-тетраазоспиро[5.5]ундекан-2,8-дионом (спирокарбоном – Sk) / Е.Е. Нетреба // Дни науки в Таврическом национальном университете имени В. И. Вернадского : тезисы докл. XLII научной конференции профессорско-преподавательского состава, аспирантов и студентов ТНУ им. В.И. Вернадского. – Симферополь, 2013. – С. 32.
- 28. Нетреба Е.Е. Молекулярная структура координационного металлополимера нитрата скандия(III) с 4,4,10,10-тетраметил-1,3,7,9-тетраазоспиро[5.5]ундекан-2,8-дионом / Е.Е. Нетреба // Успехи синтеза и комплексообразования : Третья Всероссийская научная конференция (с международным участием), 21-25 апр. 2014 г. : тезисы докладов, Часть 2. Москва, 2014. С. 134.

Благодарности

Автор выражает благодарность: к.х.н. Доценко В.В. (ВНУ им. В. Даля, г. Луганск, ЛНР) за ценную помощь при интерпретации данных ИК спектроскопии; доц. Сарнит Е.А. и проф. Гришковцу В.И. (ТНУ им. В.И. Вернадского, г. Симферополь) за ценные рекомендации по систематизированию веществ.