Сведения о научном руководителе

по диссертационной работе Буйлова Никиты Сергеевича на тему «Атомное и строение многослойных электронное наноструктур металлокомпозитными прослойками», слоями И немагнитными представленной ученой кандидата физикона соискание степени 01.04.07 физика математических наук ПО специальности конденсированного состояния

Фамилия Имя Отчество	Домашевская Эвелина Павловна
Шифр и наименование	01.04.07 – «Физика конденсированного
специальностей, по которым	состояния»
защищена диссертация	COCTOMINAN
Ученая степень и отрасль	Доктор физико-математических наук
науки	, and a second
Ученое звание	Профессор
Полное наименование	Федеральное государственное бюджетное
организации,	образовательное учреждение высшего
являющейся основным	образования «Воронежский государственный
местом	университет»
работы	
Занимаемая должность	Заведующий кафедрой физики твердого тела
	и наноструктур ФГБОУ ВО «Воронежский
	государственный университет»
Почтовый индекс, адрес	394018, г. Воронеж, Университетская пл., 1
Телефон	+7 (473) 220-83-63
Адрес электронной почты	ftt@phys.vsu.ru
Список основных	Список научных публикаций по теме
публикаций по теме	диссертации в период с 2016 по 2020 г.г.:
диссертации в	1. XPS and XAS investigations of multilayer
рецензируемых научных	nanostructures based on the amorphous CoFeB
изданиях за последние 5 лет	alloy / E.P. Domashevskaya [et al.] // Journal of
(не более 15 публикаций)	Electron Spectroscopy and Related Phenomena. –2020. – Vol 243. – P. 146979
	2. Межатомные связи в аморфных
	композитах $(CoFeB)_x(TiO2)_{1 x}$ с разным
	содержанием металлической и
	диэлектрической компонент по данным ИК-
	спектроскопии / Э.П. Домашевская [и др.] //
	Конденсированные среды и межфазные
	границы. – Воронеж, 2019. – Т. 21, № 3. – С.
	374–384.
	3. Особенности морфологии и оптических
	свойств наноструктур дисульфида молибдена
	от мономолекулярного слоя до

- фрактолообразной субструктуры / Э.П. Домашевская [и др.] // Физика и техника полупроводников. Санкт-Петербург, 2019. Т. 53, №7. С. 940 946.
- 4. Влияние относительного содержания металлической компоненты в диэлектрической матрице на образование и размеры нанокристаллов кобальта в пленочных композитах $Co_x(MgF_2)_{100-x}$ / Э.П. Домашевская [и др.] // Физика твердого тела. Санкт-Петербург, 2019. Т. 61, №2. С. 211–219.
- 5. Особенности структуры и оптических свойств MoO3, полученного в разных технологических условиях газотранспортного осаждения / Э.П. Домашевская [и др.] // Неорганические материалы. Москва, 2019. Т. 55, № 1. С. 52–61.
- 6. Исследование межатомного взаимодействия в многослойных наноструктурах $[(CoFeB)_{60}C_{40}/SiO_2]_{200}$ и $[(CoFeB)_{34}(SiO_2)_{66}/C]_{46}$ с композитными металлосодержащими слоями методом ИКспектроскопии / Э.П. Домашевская [и др.] // Неорганические материалы. Москва, 2018.— Т. 54, № 2. С. 153–159.
- 7. Phase composition of the buried silicon interlayers in the amorphous multilayer nanostructures $[(Co_{45}Fe_{45}Zr_{10})/a-Si:H]_{41}$ and $[(Co_{45}Fe_{45}Zr_{10})_{35}(Al_2O_3)_{65}/a-Si:H]_{41}$ / E.P. Domashevskaya [et al.] // Surface and interface analysis. 2018. Vol 50. P. 1265-1270.
- 8. Электронное строение и фазовый состав диэлектрических прослоек в многослойной аморфной наноструктуре [(CoFeB) $_{60}$ C $_{40}$ /SiO $_{2}$] $_{200}$] / Э.П. Домашевская [и др.] // Физика твердого тела. Санкт-Петербург, 2017. Т. 59, №1. С. 161 166.
- 9. Электронное строение и фазовый состав оксида кремния В композитных металлсодержащих многослойной слоях аморфной наноструктуры $(Co_{40}Fe_{40}B_{20})_{34}(SiO_2)_{66}/C]_{46}$ углеродными c прослойками / Э.П. Домашевская [и др.] // Неорганические материалы. – Москва, 2017.

- T. 53, № 9. C. 950 956.
- 10. Рентгеновская и рентгеноэлектронная спектроскопия новых материалов / В.И. Вовна, Э.П. Домашевская [и др.] // Журнал структурной химии.— Новосибирск, 2017.— Т. 58. № 6.— С. 1103-1106.
- 11. Особенности формирования тонких молибдена дисульфида MoS2 слоев на молибдене металлическом при разных температурах / Э.П. Домашевская [и др.] // Конденсированные межфазные среды И границы. – Воронеж, 2018. – Т. 20, № 1. – С. 56-65.
- 12. Исследование межатомного взаимодействия многослойных $(Co_{45}Fe_{45}Zr_{10}/a-Si)_{40}$ наноструктурах $(Co_{45}Fe_{45}Zr_{10}/SiO_2)_{32}$ методами ИКспектроскопии и малоугловой дифракции / Э.П. Домашевская Ги др.] Конденсированные межфазные среды И границы. – Воронеж, 2017. – Т. 19, № 2. – С. 195-204.
- 13. Особенности локальной атомной структуры металлических слоев многослойных наноструктур (CoFeZr/SiO2)₃₂ и (CoFeZr/a-Si)₄₀ с различными прослойками / Э.П. Домашевская [и др.] // Физика твердого тела. Санкт-Петербург, 2017. Т. 59, №2. С. 373 378.
- 14. Межатомные взаимодействия на интерфейсах многослойных наноструктур $(Co_{45}Fe_{45}Zr_{10}/a-Si)_{40}$ и $(Co_{45}Fe_{45}Zr_{10}/SiO_2)_{32}$ / Э.П. Домашевская [и др.] // Физика твердого тела. Санкт-Петербург, 2016. Т. 58, №5. С. 991 999.
- 15. Глубокие центры на границе раздела в гетероструктурах In2xGa2(1-x)Te3/InAs и In2Te3/InAs / Э.П. Домашевская [и др.] // Физика и техника полупроводников.— 2016.— Т. 50, № 3.— С. 313-317.,

Сведения об официальном оппоненте

по диссертационной работе Буйлова Никиты Сергеевича на тему «Атомное и строение многослойных электронное наноструктур немагнитными прослойками», металлокомпозитными слоями И представленной ученой кандидата физикона соискание степени физика математических 01.04.07 наук ПО специальности конденсированного состояния

Фамилия Имя Отчество	Яловега Галина Эдуардовна
Шифр и наименование	01.04.07 – «Физика конденсированного
специальностей, по которым	состояния»
защищена диссертация	Coctoninn
Ученая степень и отрасль	Доктор физико-математических наук
науки	Acktop dusing matematic locking mayk
Ученое звание	Доцент
Полное наименование	Федеральное государственное бюджетное
организации,	образовательное учреждение высшего
являющейся основным	образования
местом	«Южный федеральный университет»
работы оппонента	was mining of opening in a special street
Занимаемая должность	Заведующий кафедрой физики наносистем и спектроскопии ФГБОУ ВО «Южный федеральный университет»
Почтовый индекс, адрес	344115, Россия, г. Ростов-на-Дону, ул. Зорге
	37/1, д. 102
Телефон	+7(863) 218-40-00 доб. 15001
	+7(928)771-66-57
Адрес электронной почты	yalovega@sfedu.ru
Список основных	Список научных публикаций по теме
публикаций официального	диссертации в период с 2015 по 2019 г.г.:
оппонента по теме	1. Нанокомпозиты на основе оксидов 3d-
диссертации в	металлов: исследования морфологии и
рецензируемых научных	структуры методами электронной
изданиях за последние 5 лет (не более 15 публикаций)	микроскопии и рентгеновской спектроскопии /Яловега Г.Э. [и др.]//Изд. ЮФУ.–2017. 175 с. 2. Investigation of the Morphological, Atomic and Electronic Structural Changes CuO _x Nanoparticles and CNT in a Nanocomposite CuO _x /CNT: SEM and X-ray Spectroscopic Studies / V. Shmatko, G. Yalovega [et. al] // Key Engineering Materials. – 2016 – Vol. 683. – P. 215-220. 3. SiO ₂ CuO _x films for nitrogen dioxide
	3. SiO ₂ CuO _x films for nitrogen diox detection: correlation between technolo

- conditions and properties / T.N. Myasoedova, G.E. Yalovega [et. al] // Sensors and Actuators B. 2016. Vol. 230. P. 167–175.
- 4. Influence of Cu/Sn mixture on the shape and structure of crystallites in copper-containing films: morphological and X-ray spectroscopy studies / G.E. Yalovega [et. al] // Applied Surface Science. 2016. Vol. 372. P. 93–99.
- 5. Mechanism of formation coppercontaining fractal-like crystallites in metalorganic thin films: shape simulation and XANES analysis / G. Yalovega [et. al] // Physica Status Solidi B physica status solidi (b).–2016.- Vol. 253.– P. 2217-2224.
- 6. Interaction between NiOx and MWCNT in NiOx/MWCNTs composite: XANES and XPS study/ V. Shmatko, D. Leontyeva, N. Nevzorova, N. Smirnova, M. Brzhezinskaya, G. Yalovega [et. al]// Journal of Electron Spectroscopy and Related Phenomena 2017.-Vol 220.– P.76-80.
- 7. Copper oxides for energy storage application: Novel pulse alternating current synthesis /A.Ulyankina, I. Leontyev, O. Maslova, M. Allix, A. Rakhmatullin, N. Nevzorova, R.Valeev, G. Yalovega [et. al] // Materials Science in Semiconductor Processing.— 2018.— Vol 73.— P. 111–116.
- 8. Рентгеноспектральные исследования межфазного взаимодействия в нанокомпозите $CuO_x/MWCNTS / B.A.$ Шматко, А.А. Ульянкина, Н.В. Смирнова, Г.Э. Яловега // Оптика и спектроскопия.— Санкт-Петербург, 2018.— Т. 124, № 4.— С. 461-466.
- 9. New aspects in the study of carbonhydrogen interaction in hydrogenated carbon nanotubes for energy storage applications / M. Brzhezinskaya, E. A. Belenkov, V. A. Greshnyakov, G. E. Yalovega // Journal of Alloys and Compounds.— 2019.— Vol. 792.— P. 713–720.
- 10. Resistive low-temperature sensor based on the SiO₂ZrO₂ film for detection of high

concentrations of NO₂ Gas / T.N. Myasoedova, T.S. Mikhailova, G.E. Yalovega [et. al] // Chemosensors. – 2019. – Vol. 6. – P. 67. Investigation of the Co/polyacrylonitrile nanocomposite electronic structure: X-ray spectroscopy analysis / G. Yalovega [et. al] // Radiation Physics and Chemistry. – 2020. – Vol. 175.- P. 108256. Электронная структура полианилина, 12. модифицированного солями меди и циркония / В.А. Шматко, Т.Н. Мясоедова, Г.Э. Яловега // Оптика и спектроскопия.— Санкт-Петербург, 2020.– Т. 128, № 5.– С. 617-622. 13. Structure and electrochemical properties of PANI/ZrO_x and PANI/SiO_x composites / T. N. Myasoedova, T. A. Moiseeva, M. A. Kremennaya, A. Tirkeshov, G. E. Yalovega // Journal of Electronic Materials. – 2020. – Vol. 49.- P. 4707-4713. 14. Effect of pre-treatment of flax tows on mechanical properties and microstructure of natural fiber reinforced geopolymer composites / G. Lazorenko, A. Kasprzhitskii, V. Yavna, V. Mischinenko, A. Kukharskii, A. Kruglikov, A. Kolodina, G. Yalovega // Environmental Technology & Innovation. – 2020. – Vol. 20. – P. 101105.

Сведения об официальном оппоненте

по диссертационной работе Буйлова Никиты Сергеевича на тему «Атомное и строение многослойных электронное наноструктур металлокомпозитными слоями немагнитными прослойками», физикопредставленной на соискание ученой степени кандидата 01.04.07 математических наук специальности физика ПО конденсированного состояния

Фамилия Имя Отчество	Стогней Олег Владимирович
Шифр и наименование	01.04.07 – «Физика конденсированного
специальностей, по которым	состояния»
защищена диссертация	
Ученая степень и отрасль	Доктор физико-математических наук Физика
науки	конденсированного состояния
Ученое звание	Профессор

Потилов манилополица	Фонования по полученот от получе биз начения
Полное наименование	Федеральное государственное бюджетное
организации,	образовательное учреждение высшего
являющейся основным	образования «Воронежский государственный
местом	технический университет»
работы оппонента	
Занимаемая должность	Профессор кафедры физики твердого тела
	ФГБОУ ВО «Воронежский государственный
	технический университет»
Почтовый индекс, адрес	394006 г. Воронеж, ул. 20-летия Октября, д.84
Телефон	8 920-2280201
Адрес электронной почты	sto@sci.vrn.ru
Список основных	Список научных публикаций по теме
публикаций официального	диссертации в период с 2015 по 2019 г.г.:
оппонента по теме	1. Релаксация транспортных свойств в
диссертации в	нанокомпозитах ферромагнетик-диэлектрик /
рецензируемых научных	А.Б. Грановский, Ю.Е. Калинин, А.В.
изданиях за последние 5 лет	Ситников, О.В. Стогней // Известия
(не более 15 публикаций)	Российской академии наук. Серия
	физическая. – Москва, 2016. – Т. 80, № 9. – С.
	1241-1242.
	2. Magnetic nanoparticles in "Amorphous
	ferromagnetic metal-insulator" nanogranular thin
	films / A. Granovsky, Yu. Kalinin, A. Sitnikov,
	O. Stognei // Physics Procedia.— 2016.— Vol.
	82 P. 46-50.
	3. Влияние типа матрицы на
	магнитотранспортные свойства композитных
	систем Ni-AlO и Ni-NbO / О.В. Стогней [и
	др.] // Физика и техника полупроводников
	Санкт-Петербург, 2016. – Т. 50, № 6. – С. 725-
	730.
	4. Структура, термостойкость и
	микротвердость покрытий ZrO ₂ , полученных
	разными методами / С.Г. Валюхов, О.В.
	Стогней [и др.] // Неорганические
	материалы. – Москва, 2016. – Т. 52, № 4. – С.
	457-463.
	5. Thermal stability, structure and phase
	composition of $Ni_x(NbO)_{100-x}$ composites / K. I.
	Semenenko, M. A. Kashirin, O. V. Stognei [et.
	al] // Journal of Surface Investigation. X-ray,
	Synchrotron and Neutron Techniques. – 2016. –
	Vol. 10.– P. 1087–1091.
	6. Получение многослойных наноструктур
	Mg/NbO / О.В. Стогней [и др.] // Вестник

- Воронежского государственного технического университета.— Воронеж, $2016.-T.\ 12, \ N_2 \ 6.-C.\ 18-23.$
- 7. Structure and mechanical properties of nanocomposite Ni-ZrO₂ films / M.S. Filatov, O.V. Stognei [et. al] // Journal of Physics: Conference Series.— 2017.— Vol. 872.— P. 012029.
- 8. Особенности электрических свойств в гетерогенных системах Ni-MgO и $(In_2O_3/ZnO)_{83}$ при низких температурах / А.А. Гребенников, О.В. Стогней [и др.] // Вестник Воронежского государственного технического университета.— Воронеж, 2017.-T.13, $Noldsymbol{No$
- 9. Термическая стабильность многослойной наноструктуры Mg/NbO / О.В. Стогней [и др.] // Вестник Воронежского государственного технического университета.— Воронеж, 2017.— Т. 13, № 6.— С. 144-150.
- 10. Features of tunnel magnetoresistive effect in various types of nanocomposites / O.V. Stognei [et. al] // Materials Science and Nanotechnology.—2017.—Vol. 1.—P. 48
- 11. Obtainment of stabilized zirconium dioxide via the high-frequency magnetron sputtering of a metallic target / S.G. Valyukhov, O.V. Stognei [et. al] // Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques.—2018.—Vol. 12.—P. 1159-1164.
- 12. Влияние ОТЖИГОВ на структуру $Ni-Zr(Y)O_2$, полученных нанокомпозитов ВЧ-магнетронного методом реактивного напыления / М.С. Филатов, О.В. Стогней // Воронежского государственного Вестник университета.-Воронеж, технического 2018.– T. 14, № 2.– C. 147-153.
- 13. Исследование адгезии нанокомпозитного покрытия NiO-ZrO₂ к никелевой поверхности / М.С. Филатов, О.В. Стогней [и др.] // Химия, физика и механика материалов.—Воронеж, 2019.—Т. 21, № 2.—С. 126-136.
- 14. Влияние относительного содержания металлической компоненты в диэлектрической матрице на образование и

размеры нанокристаллов кобальта в
пленочных композитах $Co_x(MgF_2)_{100-x}$ / Э.П.
Домашевская, С.А. Ивков, А.В. Ситников,
О.В. Стогней [и др.] // Физика твердого тела
Санкт-Петербург, 2019. – Т. 61, № 2. – С. 211-
219.
15. Межатомные связи в аморфных
композитах $(CoFeB)_x(TiO_2)_{1-x}$ с разным
содержанием металлической и
диэлектрической компонент по данным ИК-
спектроскопии / Э.П. Домашевская, Чан Ван
Ту, А.Н. Лукин, А.В. Ситников, О.В. Стогней
// Конденсированные среды и межфазные
границы.–Воронеж, 2019.– Т. 21, № 3.– С.
374-384.

Сведения о ведущей организации

по диссертационной работе Буйлова Никиты Сергеевича на тему «Атомное и строение электронное многослойных наноструктур металлокомпозитными немагнитными прослойками», слоями ученой представленной на соискание степени кандидата физикоматематических 01.04.07 физика специальности наук ПО конденсированного состояния

Полное наименование	Федеральное государственное бюджетное
организации	учреждение науки «Удмуртский федеральный
	исследовательский центр Уральского
	отделения Российской академии наук»
Почтовый индекс, адрес	426067, Россия, г. Ижевск, ул. Т. Барамзиной,
	д. 34
Телефон	8 (3412) 50-82-00,8 (3412) 50-79-59
Адрес электронной почты	udnc@udman.ru
Сайт университета	http://udman.ru/ru/
Список основных	Список научных публикаций по теме
публикаций работников	диссертации в период с 2015 по 2019 г.г.:
ведущей организации по	1. Рентгеноэлектронное исследование
теме диссертации в	механизма функционализации sp-
рецензируемых научных	элементами поверхности
изданиях за последние 5 лет	металл/углеродных наноструктур / И.Н.
(не более 15 публикаций)	Шабанова [и др.] // Физика твердого тела.—
	Санкт-Петербург, 2017.– Т. 59, № 1.– С.
	167–171.
	2. Изменение электронной структуры и
	магнитных характеристик

- модифицированных медь/углеродных нанокомпозитов / В.И. Кодолов [и др.] // Химическая физика и мезоскопия.— Ижевск, 2018.— Т. 20, № 1.— С. 72—79.
- 3. The explanation of magnetic metal carbon mesocomposites peculiarities by means of mesoscopics notions / V.I. Kolodov [et. al] // Academ J Polym Sci.— 2019.— Vol 3.— P. 0046—0048.
- 4. Явления квантования зарядов, интерференции и аннигиляции в реакциях образования и модификации мезочастиц / В.И. Кодолов [и др.] // Химическая физика и мезоскопия. Ижевск, 2019. Т. 21, № 2. С. 267-277.
- 5. Исследования методом рентгеновской фотоэлектронной спектроскопии наноструктур znsxse, 1-х, полученных в матрице пористого оксида алюминия / А.И. Чукавин [и др.] // Физика и техника полупроводников. Санкт-Петербург, 2017. Т. 51, № 10. С. 1400—1403.
- 6. Исследование наноструктур ZnS_x Se_{1-x} @ Al_2O_3 методами рентгеновской дифракции и exafs спектроскопии / А.И. Чукавин [и др.] // Журнал структурной химии.— Новосибирск, 2017.— Т. 58, № 6.— С. 1285—1294.
- 7. Формирование композитных наноструктур на поверхности кристаллов карбида кремния под воздействием потоков железа / А.Н. Бельтюков [и др.] // Кристаллография.— Москва, 2018.— Т. 63, № 6.— С. 947-951.
- 8. Anodic oxidation of Al/Ge/Al multilayer films / A.N. Beltiukov [et. al] // Applied Surface Science.— 2018.— Vol. 459.— P. 583—587.
- 9. Наноструктурированные покрытия ZnS : Cu(Mn) на поверхности пористого анодного оксида алюминия для оптических приложений / P.Г. Валеев [и др.] // Поверхность. Рентгеновские, синхротронные и нейтронные исследования.— Москва, 2019.— № 2.— С. 28-

36.

- 10. Спектроскопические исследования нанопленок ZnS:Cu(Mn);Cl на поверхности пористого оксида алюминия / Р.Г. Валеев [и др.] // Известия Российской академии наук. Серия физическая.— Москва, 2019.— Т. 83, № 2.— С. 217—222.
- 11. Низкотемпературная кристаллизация германия в тонкопленочной системе Ge/Al / A.H. Бельтюков [и др.] // Кристаллография.— Москва, 2019.— Т. 64, № 5.— С. 796-800.
- 12. Modification of
- Li[Li $_{0.13}$ Ni $_{0.2}$ Mn $_{0.47}$ Co $_{0.2}$]O $_2$ cathode material by layered CeO $_2$ –C coating / K.A. Kurilenko [et. al] // Journal of Solid State Electrochemistry.– 2019.– Vol. 23.– P. 433-439.
- 13. Observation of excitons at room temperature in ZnS_xSe_{1-x} nanostructures embedded in a porous Al_2O_3 template / A.I. Chukavin [et. al] // Materials Chemistry and Physics.— 2019.— Vol. 235.— P. 121748.
- 14. Наноструктурированные покрытия Ni на пористом оксиде алюминия: морфология, химическая структура и катодные свойства / Р.Г. Валеев [и др.] // Журнал технической физики.— Санкт-Петербург, 2020.— Т. 90, № 3.— С. 494-500.
- 15. Atomic distributions observed in group IV-IV binary tetrahedron alloys: a revised analysis of sige and gesn compounds / B.V. Robouch [et. al] // Journal of Alloys and Compounds. 2020. Vol. 831. P. 154743.